151 resultados para gene repression


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methylenetetrahydrofolate reductase (MTHFR) is a critical enzyme in folate metabolism and is involved in DNA synthesis, DNA repair and DNA methylation. Genetic polymorphisms of this enzyme have been shown to impact several diseases, including cancer. Leukemias are malignancies arising from rapidly proliferating hematopoietic cells having great requirement of DNA synthesis. This case-control study was undertaken to analyze the association of the MTHFR gene polymorphisms 677 C"T and 1298 A"C and the risk of acute lymphoblastic leukemia in children. Materials and Methods: Eighty-six patients aged below 15 years with a confirmed diagnosis of acute lymphoblastic leukemia (ALL) and 99 matched controls were taken for this study. Analysis of the polymorphisms was done using the polymerase chain reaction -restriction fragment length polymorphism (PCR-RFLP) method. Results: Frequency of MTHFR 677 CC and CT were 85.9% and 14.1% in the controls, and 84.9% and 15.1% in the cases. The 'T' allele frequency was 7% and 7.5% in cases and controls respectively. The frequency of MTHFR 1298 AA, AC, and CC were 28.3%, 55.6% and 16.1% for controls and 23.3%, 59.3% and 17.4% for cases respectively. The 'C' allele frequency for 1298 A→C was 43.9% and 47% respectively for controls and cases. The odds ratio (OR) for C677T was 1.08 (95% CI 0.48- 2.45, p = 0.851) and OR for A1298C was 1.29(95% CI 0.65-2.29, p = 0.46) and OR for 1298 CC was 1.31 (95% CI 0.53-3.26, p =0.56). The OR for the combined heterozygous status (677 CT and 1298 AC) was 1.94 (95% CI 0.58 -6.52, p = 0.286). Conclusion: The prevalence of 'T' allele for 677 MTHFR polymorphism was low in the population studied. There was no association between MTHFR 677 C→T and 1298 A→C gene polymorphisms and risk of ALL, which may be due to the small sample size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cloned DNA fragment of the cytochrome P-450b/e gene containing the upstream region from position -179 through part of the first exon is faithfully transcribed in freeze-thawed rat liver nuclei. Phenobarbitone treatment of the animal strikingly increases this transcription, and the increase is blocked by cycloheximide (protein synthesis inhibitor) or CoCl2 (heme biosynthetic inhibitor) treatment of animals. This picture correlates very well with the reported cytochrome P-450b/e mRNA levels in vivo and run-on transcription rates in vitro under these conditions. The upstream region (from position -179) was assessed for protein binding with nuclear extracts by nitrocellulose filter binding, gel retardation, DNase I treatment ("footprinting"), and Western blot analysis. Phenobarbitone treatment dramatically increases protein binding to the upstream region, an increase once again blocked by cycloheximide or CoCl2 treatments. Addition of heme in vitro to heme-deficient nuclei and nuclear extracts restores the induced levels of transcription and protein binding to the upstream fragment, respectively. Thus, drug-mediated synthesis and heme-modulated binding of a transcription factor(s) appear involved in the transcriptional activation of the cytochrome P-450b/e genes, and an 85-kDa protein may be a major factor in this regard.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Limbal stem cell deficiency is a challenging clinical problem and the current treatment involves replenishing the depleted limbal stem cell (LSC) pool by either limbal tissue transplantation or use of cultivated limbal epithelial cells (LEC). Our experience of cultivating the LEC on denuded human amniotic membrane using a feeder cell free method, led to identification of mesenchymal cells of limbus (MC-L), which showed phenotypic resemblance to bone marrow derived mesenchymal stem cells (MSC-BM). To understand the transcriptional profile of these cells, microarray experiments were carried out.Methods: RNA was isolated from cultured LEC, MC-L and MSC-BM and microarray experiments were carried out by using Agilent chip (4x44 k). The microarray data was validated by using Realtime and semiquntitative reverse transcription polymerase chain reaction. Results: The microarray analysis revealed specific gene signature of LEC and MC-L, and also their complementary role related to cytokine and growth factor profile, thus supporting the nurturing roles of the MC-L. We have also observed similar and differential gene expression between MC-L and MSC-BM.Conclusions: This study represents the first extensive gene expression analysis of limbal explant culture derived epithelial and mesenchymal cells and as such reveals new insight into the biology, ontogeny, and in vivo function of these cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inhibitors of heme biosynthesis such as CoCl2, 3-amino-1,2,4-triazole, and thioacetamide block the 3-methylcholanthrene-mediated induction of cytochrome P-450 (c + d) messenger RNAs and their transcription in rat liver. This effect is specific, since the messenger RNA levels for albumin and glutathione transferase (Ya + Yc) and their transcription are not significantly influenced under conditions of heme depletion. Exogenous administration of heme at very low doses (50 μg/100 g body wt) is able to completely counteract the effects of the heme biosynthetic inhibitors on cytochrome P-450 (c + d) messenger RNA levels and their transcription. This constitutes a direct proof for the role of heme as a positive regulator of cytochrome P-450 gene transcription.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Administration of 3-methylcholanthrene (MC) to rats results in a striking increase in the transcription of cytochrome P-450 (c+d) messenger RNA with isolated nuclei, which is blocked by the simultaneous administration of cobalt chloride, an inhibitor of heme biosynthesis. Transcription of cytochrome P-450 (c+d) mRNAs with nuclei isolated from MC treated rats shows a linear increase with time of incubation, whereas it shows a progressive decrease with incubation time in the case of nuclei isolated from MC+CoCl2 treated rats. Addition of heme in vitro (10−6M) to the latter nuclei results in a significant counteraction of the decreased cytochrome P-450 (c+d) mRNA transcription. The inhibition in transcription rates observed in MC+CoCl2 treated rat liver nuclei is more pronounced with the seventh exon probe than with the second exon probe. Once again, in vitro heme addition can counteract the inhibition observed with both the probes. Since run off transcription with isolated nuclei represents essentially elongation of the initiated transcripts, the data obtained can be interpreted on the basis that heme regulates cytochrome P-450 gene transcription elongation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 2.3 kb BamHI fragment from the colitis bacteriophage DNA was transcribed and translated into a 20 kd structural protein P6, in a coupled transcription-translation system derived from Escherichia coli. This protein was expressed in vivo by the 2.3 kb DNA cloned in pBR322. The gene with the regulatory elements for this protein was located on the 680 bp AvaII fragment of the insert DNA. It hybridized with two RNAs of sizes 520 and 1630 nucleotides indicating that both are messengers for the 20 kd protein. Dot-blot hybridization showed that the transcripts for P6 reached a maximum level at 12 min after phage infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A human primary lung carcinoma cell line (HPL-R1) established from the tumor biopsy of a lung cancer patient, lacking in cytochrome P1-450 [aryl hydrocarbon (benzo[a]pyrene) hydroxylase (AHH)], was cloned and used to obtain variants deficient in the expression of thymidine-kinase via treatment with 5-bromo-2'-deoxyuridine, and selection for drug resistance phenotype. The variant cell line, precharacterized for thymidine kinase negative phenotype, was transfected with the thymidine kinase gene bearing p R-tk and px1-tk plasmids. Transfections from both the plasmids, demonstrated a frequency of 5.5 X 10(-5). The transfectants showed a 76-100% retention of the transferred phenotype. These data suggest that transfection in variant human cells can approach significant levels of stability observed with rodent cell recipients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Taking advantage of the degeneracy of the genetic code we have developed a novel approach to introduce, within a gene, DNA sequences capable of adopting unusual structures and to investigate the role of such sequences in regulation of gene expression in vivo. We used a computer program that generates alternative codon sequences for the same amino-acid sequence to convert a stretch of nucleotides into an inverted-repeat sequence with the potential to adopt cruciform structure. This approach was used to replace a 51-base-pair EcoRI-HindIII segment in the N-terminal region of the beta-galactosidase gene in plasmid pUC19 with a 51-bp synthetic oligonucleotide sequence with the potential to adopt a cruciform structure with 18 bp in the stem region. In selecting the 51-bp sequence, care was taken to include those codons that are preferred in E. coli. E. coli DH5-alpha cells harbouring the plasmid containing the redesigned sequence showed drastic reduction in expression of the beta-galactosidase gene compared to cells harbouring the plasmid with the native sequence. This approach demonstrates the possibility of introducing DNA secondary-structure elements to alter regulation of gene expression in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When the male is the heterogametic sex (XX♀-XY♂ or XX♀-XO♂), as inDrosophila, orthopteran insects, mammals andCaenorhabditis elegans, X-linked genes are subject to dosage compensation: the single X in the male is functionally equivalent to the two Xs in the female. However, when the female is heterogametic (ZZ♂-ZW♀), as in birds, butterflies and moths, Z-linked genes are apparently not dosage-compensated. This difference between X-linked and Z-linked genes raises fundamental questions about the role of dosage compensation. It is argued that (i) genes which require dosage compensation are primarily those that control morphogenesis and the prospective body plan; (ii) the products of these genes are required in disomic doses especially during oogenesis and early embryonic development; (iii) heterogametic females synthesize and store during oogenesis itself morphogenetically essential gene products - including those encoded by Z-linked genes — in large quantities; (iv) the abundance of these gene products in the egg and their persistence relatively late into embryogenesis enables heterogametic females to overcome the monosomic state of the Z chromosome in ZW embryos. Female heterogamety is predominant in birds, reptiles and amphibians, all of which have megalecithal eggs containing several thousand times more maternal RNA and other maternal messages than eggs of mammals,Caenorhabditis elegans, orDrosophila. This increase in egg size, yolk content and, concomitantly, the size of the maternal legacy to the embryo, may have facilitated female heterogamety and the absence of dosage compensation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Earlier studies in this laboratory had implicated heme to function as a positive modulator of phenobarbitonemediated activation of CYPIIB1/B2 gene transcription in rat liver. However, recent reports have indicated that succinylacetone, a specific inhibitor of δ-aminolevulinate dehydrase, does not affect this process. The present studies indicate that succinylacetone does inhibit the phenobarbitone-mediated increase in CYPIIB1/B2 mRNAs and their transcription in rat liver at early time points (45 min to 3 h), but the inhibition is not pronounced at later time points (16 h). Succinylacetone is a weaker inhibitor of heme biosynthesis than CoCl2, 3-amino-1,2,4-triazole, or thioacetamide used earlier in this laboratory. Succinylacetone induces δ-aminolevulinate synthase, whereas the other compounds depress the levels of the enzyme. There is a good correlation between the amount of freshly synthesized nuclear heme pool and the activation of CYPIIB1/B2 transcription by phenobarbitone. A model implicating a nuclear heme pool regulating the transcription of δ-aminolevulinate synthase, CYPIIB1/ B2, and heme oxygenase genes is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A suppressor-containing strain of Mycobacterium smegmatis SN2 was isolated by transferring an amber suppressor carried on the plasmid of Pseudomonas pseudoalcaligenes ERA through transformation. Amber mutants of mycobacteriophage I3 were isolated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A key step in the triacylglycerol (TAG) biosynthetic pathway is the final acylation of diacylglycerol (DAG) by DAG acyltransferase. In silico analysis has revealed that the DCR (defective in cuticular ridges) (At5g23940) gene has a typical HX4D acyltransferase motif at the N-terminal end and a lipid binding motif VX(2)GF at the middle of the sequence. To understand the biochemical function, the gene was overexpressed in Escherichia coli, and the purified recombinant protein was found to acylate DAG specifically in an acyl-CoA-dependent manner. Overexpression of At5g23940 in a Saccharomyces cerevisiae quadruple mutant deficient in DAG acyltransferases resulted in TAG accumulation. At5g23940 rescued the growth of this quadruple mutant in the oleate-containing medium, whereas empty vector control did not. Lipid particles were localized in the cytosol of At5g23940-transformed quadruple mutant cells, as observed by oil red O staining. There was an incorporation of 16-hydroxyhexadecanoic acid into TAG in At5g23940-transformed cells of quadruple mutant. Here we report a soluble acyl-CoA-dependent DAG acyltransferase from Arabidopsis thaliana. Taken together, these data suggest that a broad specific DAG acyltransferase may be involved in the cutin as well as in the TAG biosynthesis by supplying hydroxy fatty acid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Germline mutations in many of the genes that are involved in homologous recombination (HR)-mediated DNA double-strand break repair (DSBR) are associated with various human genetic disorders and cancer. RAD51 and RAD51 paralogs are important for HR and in the maintenance of genome stability. Despite the identification of five RAD51 paralogs over a decade ago, the molecular mechanism(s) by which RAD51 paralogs regulate HR and genome maintenance remains obscure. In addition to the known roles of RAD51C in early and late stages of HR, it also contributes to activation of the checkpoint kinase CHK2. One recent study identifies biallelic mutation in RAD51C leading to Fanconi anemia-like disorder. Whereas a second study reports monoallelic mutation in RAD51C associated with increased risk of breast and ovarian cancer. These reports show RAD51C is a cancer susceptibility gene. In this review, we focus on describing the functions of RAD51C in HR, DNA damage signaling and as a tumor suppressor with an emphasis on the new roles of RAD51C unveiled by these reports.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have isolated about a thousandDrosophila P-element transposants that allow thein situ detection of genomic enhancer elements by a histochemical assay for β-galactosidase activity. We summarize the β-galactosidase staining patterns of over 200 such transposants in the adult. Our aim was to identify genes that are likely to be involved in the chemosensory and motor pathways ofDrosophila. Based on β-galactosidase expression patterns in the tissues of our interest, we have chosen some strains for further analysis. Behavioral tests on a subset of the transposants have, in addition, identified several strains defective in their chemosensory responses.