334 resultados para functional compounds
Resumo:
Low-molecular-mass organogelators (LMOGs) based on photochromic molecules aggregate in selected solvents to form gels through various spatio-temporal interactions. The factors that control the mode of aggregation of the chromophoric core in the LMOGs during gelation, gelation-induced changes in fluorescence, the formation of stacked superstructures of extended pi-conjugated systems, and so forth are discussed with selected examples. Possible ways of generating various light-harvesting assemblies are proposed, and some unresolved questions, future challenges, and their possible solutions on this topic are presented.
Resumo:
Pyrolysis of (eta(5)-C5Me5WH3)B4H8, 1, in the presence of excess BHCl2 center dot SMe2 in toluene at 100 degrees C led to the isolation of (eta(5)-C5Me5W)(2)B5H9, 2, and B-Cl inserted (eta(5)-C5Me5W)(2)B5H8Cl, 3, and (eta(5)-C5Me5W)(2)B5H7Cl2, (four isomers). All the Chlorinated tungstaboranes were isolated as red and air and moisture sensitive solids. These new compounds have been characterized in solution by H-1, B-11, C-13 NMR, and the structural types were unequivocally established by crystallographic analysis of compounds 3, 4, and 7. Density functional theory (DFT) calculations were carded out on the model molecules of 3-7 to elucidate the actual electronic structures of these chlorinated species. On grounds of DFT calculations we demonstrated the role of transition metals, bridging hydrogens, and the effect of electrophilic substitution of hydrogens at B-H vertices of metallaborane structures.
Resumo:
Superconducting and magnetically long-range ordered states were believed to be mutually exclusive phenomena. The discovery of rare-earth compounds in recent years, which exhibit both superconductivity and magnetic ordering (ferromagnetic, antiferromagnetic or sinusoidal), has led to considerable theoretical and experimental work on such systems. In the present article, we give a review of various theoretical models and important experimental results. In the theoretical sections, we start with the Abrikosov-Gorkov pair breaking theory for dilute alloys and discuss its improvement in the work of Müller-Hartmann and Zittartz. Then, in the context of magnetic superconductors, various microscopic theories that have been advanced are presented. These predict re-entrant behaviour in some systems (ferromagnetic superconductors) and coexistence regions in others (particularly antiferromagnetic superconductors). Following this, phenomenological generalized Ginzburg-Landau theories for two kinds of orders (superconducting and magnetic) are presented. A section dealing with renormalization group analysis of phase diagrams in magnetic superconductors is given. In experimental sections, the properties of each rare-earth compounds (ternary as well as some tetranery) are reviewed. These involve susceptibility, heat capacity, resistivity, upper critical field, neutron scattering and magnetic resonance measurements. The anomalous behaviour of the upper critical field of antiferromagnetic superconductors near the Néel temperature is discussed both in theory sections and experimental section for various systems.
Resumo:
Low temperature fluorination technique is adopted for fluorination of the following sulphur compounds in freon-11 medium (1) Sulphur dioxide (2) Thionyl chloride (3) Sulphuryl chloride (4) Tetrasulphur tetra nitride and (5) Sulphur bromide. All the compounds undergo oxidative fluorination to give rise to sulphur-fluorine compounds except sulphuryl chloride which resists fluorination. Sulphuryl chloride thus behaves as a good solvent medium for fluorination of other reactive compounds like elemental sulphur. Details of the experimental procedures adopted and the identification of the products will be presented
Resumo:
Functional Programming (FP) systems are modified and extended to form Nondeterministic Functional Programming (NFP) systems in which nondeterministic programs can be specified and both deterministic and nondeterministic programs can be verified essentially within the system. It is shown that the algebra of NFP programs has simpler laws in comparison with the algebra of FP programs. "Regular" forms are introduced to put forward a disciplined way of reasoning about programs. Finally, an alternative definition of "linear" forms is proposed for reasoning about recursively defined programs. This definition, when used to test the linearity of forms, results in simpler verification conditions than those generated by the original definition of linear forms.
Functional changes in rat liver mitochondria on administration of 2-methyl-4-dimethylaminoazobenzene
Resumo:
Administration of 2-methyl-4-dimethylaminobenzene in the diet (0.1%, w/w) for 85-90 days doubled the content of mitochondria in the livers of rats. The azodye was covalently bound to liver proteins, and about 15% of the amount found in liver was associated with the mitochondrial fraction. Mitochondria isolated from the livers of azodye-fed animals showed drastically lowered ability to oxidize NAD+-linked substrates. The inhibited electron-transfer step was the reduction of ubiquinone. The organelles showed a large increase in succinate oxidase activity. The activity of cytochrome oxidase and the content of cytochrome aa3 were substantially higher in these organelles. Azodye-fed animals showed depressed serum cholesterol concentrations. The content of ubiquinone in liver also registered a small increase.
Resumo:
Indole, tryptophan, tryptamine and skatole were isolated from the leaves of Tecoma stans. Anthranilic acid was also identified in its free form, in contrast to its glucoside, in Jasminum grandiflorum. The presence of both indole and anthranilic acid in the leaves of Tecoma stans indicates that they are the true substrate and product of indole oxygenase from the leaves of Tecoma stans.
Resumo:
Infrared spectra of oxazolidine-2-one (Oxo), -2-thione (Oxt) and their N-deuteriated derivatives have been measured over the range 4000-20 cm−1. The fundamental frequencies of these molecules have been assigned on the basis of normal coordinate calculations carried out using a Urey-Bradley potential function supplemented with valence type constants for the out-of-plane modes of the planar skeleton. The results of the vibrational analyses are discussed and correlated with the assignments available for the other related five membered heterocyclic molecules.
Resumo:
Structures of a variety of compounds isolated in reactions and elucidated with the help of spectral (uv,ir,nmr and mass) data, have been discussed. In a few cases, the assigned structures were confirmed by x-ray crystal structure analysis.
Resumo:
The presence of mitochondria increased the incorporation of [2-14C]mevalonate into sterols in a cell-free system from rat liver. Various phenyl and phenolic compounds inhibited the incorporation of mevalonate when added in vitro. p-Hydroxycinnamate, a metabolite of tyrosine, was the most powerful inhibitor among the compounds tested. Catechol, resorcinol and quinol were inhibitory at high concentrations. Organic acids lacking an aromatic ring were not inhibitory. Two hypocholesterolaemic drugs, Clofibrate (α-p-chlorophenoxyisobutyrate) and Clofenapate [α,4-(p-chlorophenyl)phenoxyisobutyrate], which are known to affect some step before the formation of mevalonate in the biosynthesis of cholesterol in vivo, showed inhibition at a step beyond the formation of mevalonate in vitro. The presence of the aromatic ring and the carboxyl group in a molecule appears to be necessary for the inhibition.
Crystal growth and characterization of two-leg spin ladder compounds: Sr14Cu24O41 and Sr2Ca12Cu24O41
Resumo:
Single crystals of Sr14−xCaxCu24O41 (x=0 and 12) are grown by the travelling solvent floating zone technique using an image furnace. The grown crystals are characterized for their single crystallinity by the X-ray and Neutron Laue method. The magnetic susceptibility measurements in Sr14Cu24O41 show considerable anisotropy along the main crystallographic axes. Low-temperature specific heat measurement and DC susceptibility measurement in Ca-doped crystal showed antiferromagnetic ordering at 2.8 K at ambient pressure. High-pressure AC susceptibility measurement on Ca-doped crystal showed a sharp superconducting transition at 2 K under 40 kbars. Tc onset reached a maximum value of 9.9 K at 54 kbars. The bulk superconductivity of the sample is confirmed by the high-pressure AC calorimetry with Tc max=9.4 K and TN=5 K at 56 kbars.