89 resultados para free amino acids


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a special, hitherto-unexplored property of (-)-epigallocatechin gallate (EGCG) as a chiral solvating agent for enantiodiscrimination of alpha-amino acids in the polar solvent DMSO. This phenomenon has been investigated by H-1 NMR spectroscopy. The mechanism of the interaction property of EGCG with alpha-amino acids has been understood as arising out of hydrogen-bonded noncovalent interactions, where the -OH groups of two phenyl rings of EGCG play dominant roles. The conversion of the enantiomeric mixture into diastereomers yielded well-resolved peaks for D and L amino acids permitting the precise measurement of enantiomeric composition. Often one encounters complex situations when the spectra are severely overlapped or partially resolved hampering the testing of enantiopurity and the precise measurement of enantiomeric excess (ee). Though higher concentration of EGCG yielded better discrimination, the use of lower concentration being economical, we have exploited an appropriate 2D NMR experiment in overcoming such problems. Thus, in the present study we have successfully demonstrated the utility of the bioflavonoid (-)-EGCG, a natural product as a chiral solvating agent for the discrimination of large number of alpha-amino acids in a polar solvent DMSO. Another significant advantage of this new chiral sensing agent is that it is a natural product and does not require tedious multistep synthesis unlike many other chiral auxiliaries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacterial DNA topoisomerase I (topoI) carries out relaxation of negatively supercoiled DNA through a series of orchestrated steps, DNA binding, cleavage, strand passage and religation. The N-terminal domain (NTD) of the type IA topoisomerases harbor DNA cleavage and religation activities, but the carboxyl terminal domain (CTD) is highly diverse. Most of these enzymes contain a varied number of Zn2+ finger motifs in the CTD. The Zn2+ finger motifs were found to be essential in Escherichia coli topoI but dispensable in the Thermotoga maritima enzyme. Although, the CTD of mycobacterial topoI lacks Zn2+ fingers, it is indispensable for the DNA relaxation activity of the enzyme. The divergent CTD harbors three stretches of basic amino acids needed for the strand passage step of the reaction as demonstrated by a new assay. We also show that the basic amino acids constitute an independent DNA-binding site apart from the NTD and assist the simultaneous binding of two molecules of DNA to the enzyme, as required during the catalytic step. Although the NTD binds to DNA in a site-specific fashion to carry out DNA cleavage and religation, the basic residues in CTD bind to non-scissile DNA in a sequence-independent manner to promote the crucial strand passage step during DNA relaxation. The loss of Zn2+ fingers from the mycobacterial topoI could be associated with Zn2+ export and homeostasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Copper(II) complexes Cu(Fc-aa)(cur)] (1-3) of curcumin (Hcur) and N-ferrocenylmethyl-L-amino acids (Fc-aa), viz., ferrocenylmethyl-L-tyrosine (Fc-TyrH), ferrocenylmethyl-L-tryptophan (Fc-TrpH) and ferrocenylmethyl-L-methionine (Fc-MetH), were prepared and characterized. The DNA photocleavage activity, photocytotoxicity and cellular localization in HeLa and MCF-7 cancer cells of these complexes were studied. Acetylacetonate (acac) complexes Cu(Fc-aa)(acac)] (4-6) were prepared and used as controls. The chemical nuclease inactive complexes showed efficient pUC19 DNA cleavage activity in visible light. Complexes 1-3 showed high photocytotoxicity with low dark toxicity thus giving remarkable photodynamic effect. FACScan analysis showed apoptosis of the cancer cells. Fluorescence microscopic studies revealed primarily cytosolic localization of the complexes. (C) 2013 Elsevier Masson SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystal structures of nine peptides containing gamma(4)Val and gamma(4)Leu are described. The short sequences Boc-gamma(4)(R)Val](2)-OMe 1, Boc-gamma(4)(R)Val](3)-NHMe 2 and Boc-gamma(4)(S)Val-gamma(4)(R)Val-OMe 3 adopt extended apolar, sheet like structures. The tetrapeptide Boc-gamma(4)(R)Val](4)-OMe 4 adopts an extended conformation, in contrast to the folded C-14 helical structure determined previously for Boc-gamma(4)(R)Leu](4)-OMe. The hybrid alpha gamma sequence Boc-Ala-gamma(4)(R)Leu](2)-OMe 5 adopts an S-shaped structure devoid of intramolecular hydrogen bonds, with both alpha residues adopting local helical conformations. In sharp contrast, the tetrapeptides Boc-Aib-gamma(4)(S)Leu](2)-OMe 6 and Boc-Leu-gamma(4)(R)Leu](2)-OMe 7 adopt folded structures stabilized by two successive C-12 hydrogen bonds. gamma(4)Val residues have also been incorporated into the strand segments of a crystalline octapeptide, Boc-Leu-gamma(4)(R)Val-Val-(D)Pro-Gly-Leu-gamma(4)(R)Val-Val-OMe 8. The gamma gamma delta gamma tetrapeptide containing gamma(4)Val and delta(5)Leu residues adopts an extended sheet like structure. The hydrogen bonding pattern at gamma residues corresponds to an apolar sheet, while a polar sheet is observed at the lone delta residue. The transition between folded and extended structures at gamma residues involves a change of the torsion angle from the gauche to the trans conformation about the C-beta-C-alpha bond.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Branched Chain Amino Acids (BCAAs) are related to different aspects of diseases like pathogenesis, diagnosis and even prognosis. While in some diseases, levels of all the BCAAs are perturbed; in some cases, perturbation occurs in one or two while the rest remain unaltered. In case of ischemic heart disease, there is an enhanced level of plasma leucine and isoleucine but valine level remains unaltered. In `Hypervalinemia', valine is elevated in serum and urine, but not leucine and isoleucine. Therefore, identification of these metabolites and profiling of individual BCAA in a quantitative manner in body-fluid like blood plasma/serum have long been in demand. H-1 NMR resonances of the BCAAs overlap with each other which complicates quantification of individual BCAAs. Further, the situation is limited by the overlap of broad resonances of lipoprotein with the resonances of BCAAs. The widely used commercially available kits cannot differentially estimate the BCAAs. Here, we have achieved proper identification and characterization of these BCAAs in serum in a quantitative manner employing a Nuclear Magnetic Resonance-based technique namely T-2-edited Correlation Spectroscopy (COSY). This approach can easily be extended to other body fluids like bile, follicular fluids, saliva, etc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The discovery of microRNAs (miRNAs) has added a new dimension to the gene regulatory networks, making aberrantly expressed miRNAs as therapeutically important targets. Small molecules that can selectively target and modulate miRNA levels can thus serve as lead structures. Cationic cyclic peptides containing sugar amino acids represent a new class of small molecules that can target miRNA selectively. Upon treatment of these small molecules in breast cancer cell line, we profiled 96 therapeutically important miRNAs associated with cancer and observed that these peptides can selectively target paralogous miRNAs of the same seed family. This selective inhibition is of prime significance in cases when miRNAs of the same family have tissue-specific expression and perform different functions. During these conditions, targeting an entire miRNA family could lead to undesired adverse effects. The selective targeting is attributable to the difference in the three-dimensional structures of precursor miRNAs. Hence, the core structure of these peptides can be used as a scaffold for designing more potent inhibitors of miRNA maturation and hence function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interdependence of the concept of allostery and enzymatic catalysis, and they being guided by conformational mobility is gaining increased prominence. However, to gain a molecular level understanding of llostery and hence of enzymatic catalysis, it is of utter importance that the networks of amino acids participating in allostery be deciphered. Our lab has been exploring the methods of network analysis combined with molecular dynamics simulations to understand allostery at molecular level. Earlier we had outlined methods to obtain communication paths and then to map the rigid/flexible regions of proteins through network parameters like the shortest correlated paths, cliques, and communities. In this article, we advance the methodology to estimate the conformational populations in terms of cliques/communities formed by interactions including the side-chains and then to compute the ligand-induced population shift. Finally, we obtain the free-energy landscape of the protein in equilibrium, characterizing the free-energy minima accessed by the protein complexes. We have chosen human tryptophanyl-tRNA synthetase (hTrpRS), a protein esponsible for charging tryptophan to its cognate tRNA during protein biosynthesis for this investigation. This is a multidomain protein exhibiting excellent allosteric communication. Our approach has provided valuable structural as well as functional insights into the protein. The methodology adopted here is highly generalized to illuminate the linkage between protein structure networks and conformational mobility involved in the allosteric mechanism in any protein with known structure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

tRNA synthetases (aaRS) are enzymes crucial in the translation of genetic code. The enzyme accylates the acceptor stem of tRNA by the congnate amino acid bound at the active site, when the anti-codon is recognized by the anti-codon site of aaRS. In a typical aaRS, the distance between the anti-codon region and the amino accylation site is approximately 70 Å. We have investigated this allosteric phenomenon at molecular level by MD simulations followed by the analysis of protein structure networks (PSN) of non-covalent interactions. Specifically, we have generated conformational ensembles by performing MD simulations on different liganded states of methionyl tRNA synthetase (MetRS) from Escherichia coli and tryptophenyl tRNA synthetase (TrpRS) from Human. The correlated residues during the MD simulations are identified by cross correlation maps. We have identified the amino acids connecting the correlated residues by the shortest path between the two selected members of the PSN. The frequencies of paths have been evaluated from the MD snapshots[1]. The conformational populations in different liganded states of the protein have been beautifully captured in terms of network parameters such as hubs, cliques and communities[2]. These parameters have been associated with the rigidity and plasticity of the protein conformations and can be associated with free energy landscape. A comparison of allosteric communication in MetRS and TrpRS [3] elucidated in this study highlights diverse means adopted by different enzymes to perform a similar function. The computational method described for these two enzymes can be applied to the investigation of allostery in other systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Synthetically useful N-Fmoc amino-alkyl isothiocyanates have been described, starting from protected amino acids. These compounds have been synthesized in excellent yields by thiocarbonylation of the monoprotected 1,2-diamines with CS2/TEA/p-TsCl, isolated as stable solids, and completely characterized. The procedure has been extended to the synthesis of amino alkyl isothiocyanates from Boc- and Z-protected amino acids as well. The utility of these isothiocyanates for peptidomimetics synthesis has been demonstrated by employing them in the preparation of a series of dithioureidopeptide esters. Boc-Gly-OH and Boc-Phe-OH derived isothiocyanates 9a and 9c have been obtained as single crystals and their structures solved through X-ray diffraction. They belong to the orthorhombic crystal system, and have a single molecule in the asymmetric unit (Z′ = 1). 9a crystallizes in the centrosymmetric space group Pbca, while 9c crystallizes in the noncentrosymmetric space group P212121.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Understanding the key factors that influence the interaction preferences of amino acids in the folding of proteins have remained a challenge. Here we present a knowledge-based approach for determining the effective interactions between amino acids based on amino acid type, their secondary structure, and the contact based environment that they find themselves in the native state structure as measured by their number of neighbors. We find that the optimal information is approximately encoded in a 60 x 60 matrix describing the 20 types of amino acids in three distinct secondary structures (helix, beta strand, and loop). We carry out a clustering scheme to understand the similarity between these interactions and to elucidate a nonredundant set. We demonstrate that the inferred energy parameters can be used for assessing the fit of a given sequence into a putative native state structure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dehydroamino acids are important precursors for the synthesis of a number of unnatural amino acids and are structural components in many biologically active peptide derivatives. However, efficient synthetic procedures for their production in large amounts and without side reactions are limited. We report here an improved procedure for the synthesis of dehydroalanine and dehydroamino butyric acid from the carbonate derivatives of serine and threonine using TBAF. The antiselective E-2 elimination of the carbonate derivatives of serine and threonine using TBAF is milder and more efficient than other available procedures. The elimination reaction is completed in less than 10 min with various carbonate derivatives studied and the methodology is very efficient for the synthesis of dehydroamino acids and dehydropeptides. The procedure thus provides an easy access to key synthetic precursors and can be used to introduce interesting structural elements to designed peptides. Copyright

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Formation of C4 dicarboxylic acids in Plasmodium berghei by carbon dioxide fixation reaction has been demonstrated by the use of labeled NaH14CO3. The reactions require glucose, which may be required not only as an energy source but also to contribute to the formation of pyruvate in the process of carbon dioxide fixation. Intracellular concentration of pyruvate may play an important role in the metabolism of P. berghei; an increased intracellular level of pyruvate seems to be a prerequisite before some of these reactions could be detected. The distribution of the label indicates extensive randomization of amino acids and suggests an extensive cycling of the amino acid and organic acid pools of the parasites. This investigation formed part of the thesis submitted in 1965 for the doctoral degree at the Indian Institute of Science, Bangalore 12, India, and was supported in part by the Council of Scientific and Industrial Research, India.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

1. The polarographic behaviour of amino-acid complexes of zinc has been studied using seven amino acids as complexing agents. 2. The effect of varying the pH of the base solution and the concentration of amino-acid anion on the polarographic behaviour of zinc in these solutions have indi cated the formation of twelve amino-acid complexes. The stability constants could not be calculated due to the irreversible nature of the waves. 3. The effect of sodium hydroxide, sodium carbonate, and ammonia on the polarographic behaviour of zinc has been investigated. The results can be interpreted as due to the formation of mixed complexes in many systems. 4. Amino-acid base solutions have been found to be suitable for the polarographic estimation of zinc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

1. A detailed polarographic study of cadmium has been made employing glycine, α-alanine, β-alanine, valine, aspartic acid, glutamic acid and asparagine as complexing agents at various pH values. The effect of incorporating sodium hydroxide, sodium carbonate and ammonium nitrate + ammonium hydroxide, on the polarographic behaviour of amino acid complexes of cadmium has also been investigated. 2. The reduction process has been found to be reversible in all systems. 3. The small shifts in the half-wave potentials noticed due to increase in the concentration of sodium hydroxide and sodium carbonate in presence of amino acids have been explained on the basis of formation of mixtures of pure and mixed amino acid complexes of cadmium. Mixed complexes have also been noticed in presence of ammonium hydroxide and ammonium nitrate and amino acids. 4. Polarographic evidence has been obtained for the formation of over 30 pure and mixed complexes. The dissociation constant Kd, the Δ F° value for the dissociation, and standard potential value for the formation, of each complex have been computed. 5. It has been found that cadmium can be polarographically estimated in amino acid solutions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

1. The polarographic behaviour of glycine, α-alanine, β-alanine, valine, aspartic acid, glutamic acid and asparagine complexes of lead has been studied at various pH values and in presence of (1) NaOH, (2) Na2CO3 and (3) NH4 NO3+NH4OH. All the polarographic waves have been found to be reversible. 2. Experiments conducted on the effect of variation of pH, i.e., 7amino-acid have indicated the formation of Pb A and Pb A2. The data have been analysed employing the equations developed by DeFord and Hume as modified by McKenzie and Mellor. 3. Only pure complexes are produced below pH 11·2 in the case of aspartic acid, glutamic acid and glycine, while mono hydroxy complexes are produced in α-alanine, valine and asparagine systems. 4. It has been found that no mixed hydroxy and mixed ammonia complexes are produced in presence of sodium hydroxide and ammonia-ammonium nitrate, respectively. However evidence is obtained for the formation of mixed carbonate complexes in glycine and aspartic acid systems in presence of sodium carbonate. 5. Thermodynamic data have been calculated from polarographic measurements for 18 complexes. 6. The suitability of incorporating amino acids in base solutions for the polarographic estimation of lead has been tested.