86 resultados para flexible warehouse


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem and related earlier work All the above problems involve the passage of a long chain molecule, through a region in space, where the free energy per segment is higher, thus effectively presenting a barrier for the motion of the molecule. This is what we refer to as the Kramers proble...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The highest levels of security can be achieved through the use of more than one type of cryptographic algorithm for each security function. In this paper, the REDEFINE polymorphic architecture is presented as an architecture framework that can optimally support a varied set of crypto algorithms without losing high performance. The presented solution is capable of accelerating the advanced encryption standard (AES) and elliptic curve cryptography (ECC) cryptographic protocols, while still supporting different flavors of these algorithms as well as different underlying finite field sizes. The compelling feature of this cryptosystem is the ability to provide acceleration support for new field sizes as well as new (possibly proprietary) cryptographic algorithms decided upon after the cryptosystem is deployed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analytical expressions are found for the wavenumbers in an infinite flexible in vacuo I fluid-filled circular cylindrical shell based on different shell-theories using asymptotic methods. Donnell-Mushtari theory (the simplest shell theory) and four higher order theories, namely Love-Timoshenko, Goldenveizer-Novozhilov, Flugge and Kennard-simplified are considered. Initially, in vacuo and fluid-coupled wavenumber expressions are presented using the Donnell-Mushtari theory. Subsequently, the wavenumbers using the higher order theories are presented as perturbations on the Donnell-Mushtari wavenumbers. Similarly, expressions for the resonance frequencies in a finite shell are also presented, using each shell theory. The basic differences between the theories being what they are, the analytical expressions obtained from the five theories allow one to see how these differences propagate into the asymptotic expansions. Also, they help to quantify the difference between the theories for a wide range of parameter values such as the frequency range, circumferential order, thickness ratio of the shell, etc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the Wilemski-Fixman approach G. Wilemski, M. Fixman, J. Chem. Phys. 60 (1974) 866], we show that, for a flexible chain in theta solvent, hydrodynamic interaction treated with a pre-averaging approximation makes ring closing faster if the chain is not very short. We also show that the ring closing time for a long chain with hydrodynamic interaction in theta solvent scales with the chain length (N) as N-1.5, in agreement with the previous renormalization group calculation based prediction by Freidman and O'Shaughnessy B. Friedman, B. O'Shaughnessy, Phys. Rev. A 40 (1989) 5950]. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the fabrication of free-standing flexible inorganic/organic hybrid structures by exfoliating ZnO nanostructured films from the flat indium tin oxide (ITO)/silicon/sapphire substrates using poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS). Strong interaction between ZnO and PEDOT: PSS and the thermomechanical response of PEDOT: PSS are the key issues for the exfoliation to prevail. The performance of the free-standing hybrid structures as rectifiers and photodetectors is better as compared to ITO supported hybrid structures. It is also shown that device properties of hybrid structures can be tuned by using different electrode materials. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4729550]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analytical expressions are found for the coupled wavenumbers in flexible, fluid-filled, circular cylindrical orthotropic shells using the asymptotic methods. These expressions are valid for arbitrary circumferential orders. The Donnell-Mushtari shell theory is used to model the shell and the effect of the fluid is introduced through the fluid-loading parameter mu. The orthotropic problem is posed as a perturbation on the corresponding isotropic problem by defining a suitable orthotropy parameter epsilon, which is a measure of the degree of orthotropy. For the first study, an isotropic shell is considered (by setting epsilon = 0) and expansions are found for the coupled wavenumbers using a regular perturbation approach. In the second study, asymptotic expansions are found for the coupled wavenumbers in the limit of small orthotropy (epsilon << 1). For each study, isotropy and orthotropy, expansions are found for small and large values of the fluid-loading parameter mu. All the asymptotic solutions are compared with numerical solutions to the coupled dispersion relation and the match is seen to be good. The differences between the isotropic and orthotropic solutions are discussed. The main contribution of this work lies in extending the existing literature beyond in vacuo studies to the case of fluid-filled shells (isotropic and orthotropic).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the motion of one dimensional flexible objects such as ropes, chains, etc., the assumption of constant length is realistic. Moreover,their motion appears to be naturally minimizing some abstract distance measure, wherein the disturbance at one end gradually dies down along the curve defining the object. This paper presents purely kinematic strategies for deriving length-preserving transformations of flexible objects that minimize appropriate ‘motion’. The strategies involve sequential and overall optimization of the motion derived using variational calculus. Numerical simulations are performed for the motion of a planar curve and results show stable converging behavior for single-step infinitesimal and finite perturbations 1 as well as multi-step perturbations. Additionally, our generalized approach provides different intuitive motions for various problem-specific measures of motion, one of which is shown to converge to the conventional tractrix-based solution. Simulation results for arbitrary shapes and excitations are also included.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we report on the application aspect of piezoelectric ZnO thin film deposited on flexible phynox alloy substrate. Highly crystalline piezoelectric ZnO thin films were deposited by RF reactive magnetron sputtering and were characterized by XRD, SEM, AFM analysis. Also, the effective d(33) coefficient value measurement was performed. The actuator element is a circular diaphragm of phynox alloy on to which piezoelectric ZnO thin film was deposited. ZnO film deposited actuator element was firmly fixed inside a suitable concave perspex mounting designed specifically for micro actuation purpose. The actuator element was excited at different frequencies for the supply voltages of 2V, 5V and 8V. Maximum deflection of the ZnO film deposited diaphragm was measured to be 1.25 mu m at 100 Hz for the supply voltage of 8V. The developed micro actuator has the potential to be used as a micro pump for pumping nano liters to micro liters of fluids per minute for numerous biomedical and aerospace applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we report a novel piezoelectric ZnO nanogenerator on flexible metal alloy substrate (Phynox alloy) for energy harvesting and sensing applications. The vertically aligned ZnO nanowires are sandwiched between Au electrodes. The aligned growth of ZnO nanowires have been successfully synthesized on Au coated metal alloy substrate by hydrothermal method at low temperature (95 +/- 1 degrees C). The as-synthesized vertically aligned ZnO nanowires were characterized using FE-SEM. Further, PMMA is spin coated over the aligned ZnO nanowires for the purpose of their long term stability. The fabricated nanogenerator is of size 30mm x 6mm. From energy harvesting point of view, the response of the nanogenerator due to finger tip impacts ranges from 0.9 V to 1.4V. Also for sensing application, the maximum output voltage response of the nanogenerator is found to be 2.86V due to stainless steel (SS) ball impact and 0.92 V due to plastic ball impact.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For one-dimensional flexible objects such as ropes, chains, hair, the assumption of constant length is realistic for large-scale 3D motion. Moreover, when the motion or disturbance at one end gradually dies down along the curve defining the one-dimensional flexible objects, the motion appears ``natural''. This paper presents a purely geometric and kinematic approach for deriving more natural and length-preserving transformations of planar and spatial curves. Techniques from variational calculus are used to determine analytical conditions and it is shown that the velocity at any point on the curve must be along the tangent at that point for preserving the length and to yield the feature of diminishing motion. It is shown that for the special case of a straight line, the analytical conditions lead to the classical tractrix curve solution. Since analytical solutions exist for a tractrix curve, the motion of a piecewise linear curve can be solved in closed-form and thus can be applied for the resolution of redundancy in hyper-redundant robots. Simulation results for several planar and spatial curves and various input motions of one end are used to illustrate the features of motion damping and eventual alignment with the perturbation vector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Room temperature operation, low detection limit and fast response time are highly desirable for a wide range of gas sensing applications. However, the available gas sensors suffer mainly from high temperature operation or external stimulation for response/recovery. Here, we report an ultrasensitive-flexible-silver-nanoparticle based nanocomposite resistive sensor for ammonia detection and established the sensing mechanism. We show that the nanocomposite can detect ammonia as low as 500 parts-per-trillion at room temperature in a minute time. Furthermore, the evolution of ammonia from different chemical reactions has been demonstrated using the nanocomposite sensor as an example. Our results demonstrate the proof-of-concept for the new detector to be used in several applications including homeland security, environmental pollution and leak detection in research laboratories and many others.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flexible, nano-composite moisture barrier films of poly(vinyl alcohol-co-ethylene) with surface modified montmorillonite fabricated by solution casting were used to encapsulate organic devices. The composite films were characterized by FTIR, UV-visible spectroscopy and SEM imaging. Thermal and mechanical properties of the composite films were studied by DSC and UTM. Calcium degradation test was used to determine the transmission rate of water vapour through the composite films, which showed a gradual reduction from similar to 0.1 g m(-2) day(-1) to 0.0001 g m(-2) day(-1) with increasing modified montmorillonite loading in the neat copolymer. The increase in moisture barrier performance is attributed to the decreased water vapour diffusivity due to matrix-filler interactions in the composite. The accelerated aging test was carried out for non-encapsulated and encapsulated devices to evaluate the efficiency of the encapsulants. The encapsulated devices exhibited longer lifetimes indicating the efficacy of the encapsulant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rigid splitter plates in the wake of bluff bodies are known to suppress the primary vortex shedding. In the present work, we experimentally study the problem of a flexible splitter plate in the wake of a circular cylinder. In this case, the splitter plate is free to continuously deform along its length due to the fluid forces acting on it; the flexural rigidity (EI) of the plate being an important parameter. Direct visualizations of the splitter plate motions, for very low values of flexural rigidity (EI), indicate periodic traveling wave type deformations of the splitter plate with maximum tip amplitudes of the order of I cylinder diameter. As the Reynolds number based on cylinder diameter is varied, two regimes of periodic splitter plate motions are found that are referred to as mode I and mode II, with a regime of aperiodic motions between them. The frequency of plate motions in both periodic modes is found to be close to the plane cylinder Strouhal number of about 0.2, while the average frequencies in the non-periodic regime are substantially lower. The measured normalized phase speed of the traveling wave for both periodic modes is also close to the convection speed of vortices in the plane cylinder wake. As the flexural rigidity of the plate (EI) is increased, the response of the plate was found to shift to the right when plotted with flow speed or Re. To better capture the effect of varying EI, we define and use a non-dimensional bending stiffness, K*, similar to the ones used in the flag flutter problem, K*=EI/(0.5 rho(UL3)-L-2), where U is the free-stream velocity and L is the splitter plate length. Amplitude data for different EI cases when plotted against this parameter appear to collapse on to a single curve for a given splitter plate length. Measurements of the splitter plate motions for varying splitter plate lengths indicate that plates that are substantially larger than the formation length of the plane cylinder wake have similar responses, while shorter plates show significant differences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The uncertainty in material properties and traffic characterization in the design of flexible pavements has led to significant efforts in recent years to incorporate reliability methods and probabilistic design procedures for the design, rehabilitation, and maintenance of pavements. In the mechanistic-empirical (ME) design of pavements, despite the fact that there are multiple failure modes, the design criteria applied in the majority of analytical pavement design methods guard only against fatigue cracking and subgrade rutting, which are usually considered as independent failure events. This study carries out the reliability analysis for a flexible pavement section for these failure criteria based on the first-order reliability method (FORM) and the second-order reliability method (SORM) techniques and the crude Monte Carlo simulation. Through a sensitivity analysis, the most critical parameter affecting the design reliability for both fatigue and rutting failure criteria was identified as the surface layer thickness. However, reliability analysis in pavement design is most useful if it can be efficiently and accurately applied to components of pavement design and the combination of these components in an overall system analysis. The study shows that for the pavement section considered, there is a high degree of dependence between the two failure modes, and demonstrates that the probability of simultaneous occurrence of failures can be almost as high as the probability of component failures. Thus, the need to consider the system reliability in the pavement analysis is highlighted, and the study indicates that the improvement of pavement performance should be tackled in the light of reducing this undesirable event of simultaneous failure and not merely the consideration of the more critical failure mode. Furthermore, this probability of simultaneous occurrence of failures is seen to increase considerably with small increments in the mean traffic loads, which also results in wider system reliability bounds. The study also advocates the use of narrow bounds to the probability of failure, which provides a better estimate of the probability of failure, as validated from the results obtained from Monte Carlo simulation (MCS).