62 resultados para fine partition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Use of engineered landfills for the disposal of industrial wastes is currently a common practice. Bentonite is attracting a greater attention not only as capping and lining materials in landfills but also as buffer and backfill materials for repositories of high-level nuclear waste around the world. In the design of buffer and backfill materials, it is important to know the swelling pressures of compacted bentonite with different electrolyte solutions. The theoretical studies on swell pressure behaviour are all based on Diffuse Double Layer (DDL) theory. To establish a relation between the swell pressure and void ratio of the soil, it is necessary to calculate the mid-plane potential in the diffuse part of the interacting ionic double layers. The difficulty in these calculations is the elliptic integral involved in the relation between half space distance and mid plane potential. Several investigators circumvented this problem using indirect methods or by using cumbersome numerical techniques. In this work, a novel approach is proposed for theoretical estimations of swell pressures of fine-grained soil from the DDL theory. The proposed approach circumvents the complex computations in establishing the relationship between mid-plane potential and diffused plates’ distances in other words, between swell pressure and void ratio.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the formation of Ag-Fe nanoparticles with an ultrafine scale phase separated microstructure consisting of Ag and Fe(3)O(4) phases. Ag-Fe particles were synthesised by the co-reduction of Ag and Fe salts in water medium. The co-existing Ag and Fe(3)O(4) phase volumes were around similar to 1 nm in one of the dimensions. (C) 2011 Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ultrastructural functions of the electron-dense glycopeptidolipid-containing outermost layer (OL), the arabinogalactan-mycolic acid-containing electron-transparent layer (ETL), and the electron-dense peptidoglycan layer (PGL) of the mycobacterial cell wall in septal growth and constriction are not clear. Therefore, using transmission electron microscopy, we studied the participation of the three layers in septal growth and constriction in the fast-growing saprophytic species Mycobacterium smegmatis and the slow-growing pathogenic species Mycobacterium xenopi and Mycobacterium tuberculosis in order to document the processes in a comprehensive and comparative manner and to find out whether the processes are conserved across different mycobacterial species. A complete septal partition is formed first by the fresh synthesis of the septal PGL (S-PGL) and septal ETL (S-ETL) from the envelope PGL (E-PGL) in M. smegmatis and M. xenopi. The S-ETL is not continuous with the envelope ETL (E-ETL) due to the presence of the E-PGL between them. The E-PGL disappears, and the S-ETL becomes continuous with the E-ETL, when the OL begins to grow and invaginate into the S-ETL for constriction. However, in M. tuberculosis, the S-PGL and S-ETL grow from the E-PGL and E-ETL, respectively, without a separation between the E-ETL and S-ETL by the E-PGL, in contrast to the process in M. smegmatis and M. xenopi. Subsequent growth and invagination of the OL into the S-ETL of the septal partition initiates and completes septal constriction in M. tuberculosis. A model for the conserved sequential process of mycobacterial septation, in which the formation of a complete septal partition is followed by constriction, is presented. The probable physiological significance of the process is discussed. The ultrastructural features of septation and constriction in mycobacteria are unusually different from those in the well-studied organisms Escherichia coli and Bacillus subtilis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydraulic conductivity of fine-grained soils has assumed greater importance in waste disposal facilities. It is necessary to understand better the factors controlling hydraulic conductivity of fine-grained soils which are used as liners in waste disposal facilities. Hydraulic Conductivity study with ten soils with two fluids having extreme dielectric constants(epsilon) namely water and CCl4 has shown that intrinsic permeability (K) increases drastically with decrease in epsilon. These changes are attributed to the significant reduction in the thickness of diffuse double layer which in turn mainly dependent on the epsilon of the permeant. Hydraulic Conductivity with water of each pair of soils having nearly same liquid limit but different plasticity properties is found to be vastly different, but found to correlate well with shrinkage index, defined as difference between the liquid and the shrinkage limits. Also the ratio Kccl(4)/K-w is found to significantly increase with the increase in the shrinkage index.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Writing the hindered rotor (hr) partition function as the trace of (rho) over cap = e(-beta(H) over cap hr), we approximate it by the sum of contributions from a set of points in position space. The contribution of the density matrix from each point is approximated by performing a local harmonic expansion around it. The highlight of this method is that it can be easily extended to multidimensional systems. Local harmonic expansion leads to a breakdown of the method a low temperatures. In order to calculate the partition function at low temperatures, we suggest a matrix multiplication procedure. The results obtained using these methods closely agree with the exact partition function at all temperature ranges. Our method bypasses the evaluation of eigenvalues and eigenfunctions and evaluates the density matrix for internal rotation directly. We also suggest a procedure to account for the antisymmetry of the total wavefunction in the same. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Software transactional memory (STM) is a promising programming paradigm for shared memory multithreaded programs. In order for STMs to be adopted widely for performance critical software, understanding and improving the cache performance of applications running on STM becomes increasingly crucial, as the performance gap between processor and memory continues to grow. In this paper, we present the most detailed experimental evaluation to date, of the cache behavior of STM applications and quantify the impact of the different STM factors on the cache misses experienced by the applications. We find that STMs are not cache friendly, with the data cache stall cycles contributing to more than 50% of the execution cycles in a majority of the benchmarks. We find that on an average, misses occurring inside the STM account for 62% of total data cache miss latency cycles experienced by the applications and the cache performance is impacted adversely due to certain inherent characteristics of the STM itself. The above observations motivate us to propose a set of specific compiler transformations targeted at making the STMs cache friendly. We find that STM's fine grained and application unaware locking is a major contributor to its poor cache behavior. Hence we propose selective Lock Data co-location (LDC) and Redundant Lock Access Removal (RLAR) to address the lock access misses. We find that even transactions that are completely disjoint access parallel, suffer from costly coherence misses caused by the centralized global time stamp updates and hence we propose the Selective Per-Partition Time Stamp (SPTS) transformation to address this. We show that our transformations are effective in improving the cache behavior of STM applications by reducing the data cache miss latency by 20.15% to 37.14% and improving execution time by 18.32% to 33.12% in five of the 8 STAMP applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The identification of the damage mechanisms involved in the wear process demands the finer scale characterization of the surface, as well as the subsurface region of the wear scar region, and to this end, this article discusses the results obtained with Cu-10 wt% Pb-based metallic nanocomposites using a host of characterization techniques, including transmission electron microscopy and ion milling microscopy. Apart from finer scale characterization to understand deformation and cracking during the wear process, X-ray photoelectron spectroscopy analysis of wear debris confirms the occurrence of oxidation of Pb phase to Pb3O4. In order to understand the role of oxides on friction and wear, sliding wear tests in argon were also carried out and such tests did not result in the formation of any tribo-oxides, as confirmed using electron probe microanalysis. Conclusively, oxidative wear is attributed as the dominant wear mechanism in ambient conditions for Cu-10 wt% Pb composite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a generalisation of the Voronoi partition is used for locational optimisation of facilities having different service capabilities and limited range or reach. The facilities can be stationary, such as base stations in a cellular network, hospitals, schools, etc., or mobile units, such as multiple unmanned aerial vehicles, automated guided vehicles, etc., carrying sensors, or mobile units carrying relief personnel and materials. An objective function for optimal deployment of the facilities is formulated, and its critical points are determined. The locally optimal deployment is shown to be a generalised centroidal Voronoi configuration in which the facilities are located at the centroids of the corresponding generalised Voronoi cells. The problem is formulated for more general mobile facilities, and formal results on the stability, convergence and spatial distribution of the proposed control laws responsible for the motion of the agents carrying facilities, under some constraints on the agents' speed and limit on the sensor range, are provided. The theoretical results are supported with illustrative simulation results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a scenario where the communication nodes in a sensor network have limited energy, and the objective is to maximize the aggregate bits transported from sources to respective destinations before network partition due to node deaths. This performance metric is novel, and captures the useful information that a network can provide over its lifetime. The optimization problem that results from our approach is nonlinear; however, we show that it can be converted to a Multicommodity Flow (MCF) problem that yields the optimal value of the metric. Subsequently, we compare the performance of a practical routing strategy, based on Node Disjoint Paths (NDPs), with the ideal corresponding to the MCF formulation. Our results indicate that the performance of NDP-based routing is within 7.5% of the optimal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider four-dimensional CFTs which admit a large-N expansion, and whose spectrum contains states whose conformal dimensions do not scale with N. We explicitly reorganise the partition function obtained by exponentiating the one-particle partition function of these states into a heat kernel form for the dual string spectrum on AdS(5). On very general grounds, the heat kernel answer can be expressed in terms of a convolution of the one-particle partition function of the light states in the four-dimensional CFT. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the effect of local defects, viz., cracks and cutouts on the buckling behaviour of functionally graded material plates subjected to mechanical and thermal load is numerically studied. The internal discontinuities, viz., cracks and cutouts are represented independent of the mesh within the framework of the extended finite element method and an enriched shear flexible 4-noded quadrilateral element is used for the spatial discretization. The properties are assumed to vary only in the thickness direction and the effective properties are estimated using the Mori-Tanaka homogenization scheme. The plate kinematics is based on the first order shear deformation theory. The influence of various parameters, viz., the crack length and its location, the cutout radius and its position, the plate aspect ratio and the plate thickness on the critical buckling load is studied. The effect of various boundary conditions is also studied. The numerical results obtained reveal that the critical buckling load decreases with increase in the crack length, the cutout radius and the material gradient index. This is attributed to the degradation in the stiffness either due to the presence of local defects or due to the change in the material composition. (C) 2013 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three new NPI-BODIPY dyads 1-3 (NPI = 1,8-naphthalimide, BODIPY = boron-dipyrromethene) were synthesized, characterized, and studied. The NPI and BODIPY moieties in these dyads are electronically separated by oxoaryl bridges, and the compounds only differ structurally with respect to methyl substituents on the BODIPY fluorophore. The NPI and BODIPY moieties retain their optical features in molecular dyads 1-3. Dyads 1-3 show dual emission in solution originating from the two separate fluorescent units. The variations of the dual emission in these compounds are controlled by the structural flexibilities of the systems. Dyads 13, depending on their molecular flexibilities, show considerably different spectral shapes and dissimilar intensity ratios of the two emission bands. The dyads also show significant aggregation-induced emission switching (AIES) on formation of nano-aggregates in THF/H2O with changes in emission color from green to red. Whereas the flexible and aggregation-prone compound 1 shows AIES, rigid systems with less favorable intermolecular interactions (i.e., 2 and 3) show aggregation-induced quenching of emission. Correlations of the emission intensity and structural flexibility were found to be reversed in solution and aggregated states. Photophysical and structural investigations suggested that intermolecular interactions (e. g., pi-pi stacking) play a major role in controlling the emission of these compounds in the aggregated state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation of a series of seven angular ``V'' shaped NPIs (1-7) is presented. The effect of substitution of these structurally similar NPIs on their photophysical properties in the solution-state and the solid-state is presented and discussed in light of experimental and computational findings. Compounds 1-7 show negligible to intensely strong emission yields in their solid-state depending on the nature of substituents appended to the oxoaryl moiety. The solution and solid-state properties of the compounds can be directly correlated with their structural rigidity, nature of substituents and intermolecular interactions. The versatile solid-state structures of the NPI siblings are deeply affected by the pendant substituents. All of the NPIs (1-7) show antiparallel dimeric pi-pi stacking interactions in their solid-state which can further extend in a parallel, alternate, orthogonal or lateral fashion depending on the steric and electronic nature of the C-4' substituents. Structural investigations including Hirshfeld surface analysis methods reveal that where strongly interacting systems show weak to moderate emission in their condensed states, weakly interacting systems show strong emission yields under the same conditions. The nature of packing and extended structures also affects the emission colors of the NPIs in their solid-states. Furthermore, DFT computational studies were utilized to understand the molecular and cumulative electronic behaviors of the NPIs. The comprehensive studies provide insight into the condensed-state luminescence of aggregationprone small molecules like NPIs and help to correlate the structure-property relationships.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Developments of aluminum alloys that can retain strength at and above 250 degrees C present a significant challenge. In this paper we report an ultrafine scale Al-Fe-Ni eutectic alloy with less than 3.5 aa transition metals that exhibits room temperature ultimate tensile strength of similar to 400 MPa with a tensile ductility of 6-8%. The yield stress under compression at 300 degrees C was found to be 150 MPa. We attribute it to the refinement of the microstructure that is achieved by suction casting in copper mold. The characterization using scanning and transmission electron microscopy (SEM and TEM) reveals an unique composite structure that contains the Al-Al3Ni rod eutectic with spacing of similar to 90 nm enveloped by a lamellar eutectic of Al-Al9FeNi (similar to 140 nm). Observation of subsurface deformation under Vickers indentation using bonded interface technique reveals the presence of extensive shear banding during deformation that is responsible for the origin of ductility. The dislocation configuration in Al-Al3Ni eutectic colony indicates accommodation of plasticity in alpha-Al with dislocation accumulation at the alpha-Al/Al3Ni interface boundaries. In contrast the dislocation activities in the intermetallic lamellae are limited and contain set of planner dislocations across the plates. We present a detailed analysis of the fracture surface to rationalize the origin of the high strength and ductility in this class of potentially promising cast alloy. (C) 2015 Elsevier B.V. All rights reserved.