141 resultados para federated search tool
Resumo:
It Is well established that a sequence template along with the database is a powerful tool for identifying the biological function of proteins. Here, we describe a method for predicting the catalytic nature of certain proteins among the several protein structures deposited in the Protein Data Bank (PDB) For the present study, we considered a catalytic triad template (Ser-His-Asp) found in serine proteases We found that a geometrically optimized active site template can be used as a highly selective tool for differentiating an active protein among several inactive proteins, based on their Ser-His-Asp interactions. For any protein to be proteolytic in nature, the bond angle between Ser O-gamma-Ser H-gamma His N-epsilon 2 in the catalytic triad needs to be between 115 degrees and 140 degrees The hydrogen bond distance between Ser H-gamma His N-epsilon 2 is more flexible in nature and it varies from 2 0 angstrom to 27 angstrom while in the case of His H-delta 1 Asp O-delta 1, it is from 1.6 angstrom to 2.0 angstrom In terms of solvent accessibility, most of the active proteins lie in the range of 10-16 angstrom(2), which enables easy accessibility to the substrate These observations hold good for most catalytic triads and they can be employed to predict proteolytic nature of these catalytic triads (C) 2010 Elsevier B V All rights reserved.
Resumo:
The keyword based search technique suffers from the problem of synonymic and polysemic queries. Current approaches address only theproblem of synonymic queries in which different queries might have the same information requirement. But the problem of polysemic queries,i.e., same query having different intentions, still remains unaddressed. In this paper, we propose the notion of intent clusters, the members of which will have the same intention. We develop a clustering algorithm that uses the user session information in query logs in addition to query URL entries to identify cluster of queries having the same intention. The proposed approach has been studied through case examples from the actual log data from AOL, and the clustering algorithm is shown to be successful in discerning the user intentions.
Resumo:
The search engine log files have been used to gather direct user feedback on the relevancy of the documents presented in the results page. Typically the relative position of the clicks gathered from the log files is used a proxy for the direct user feedback. In this paper we identify reasons for the incompleteness of the relative position of clicks for deciphering the user preferences. Hence, we propose the use of time spent by the user in reading through the document as indicative of user preference for a document with respect to a query. Also, we identify the issues involved in using the time measure and propose means to address them.
Resumo:
We present a method to perform in situ microrheological measurements on monolayers of soft materials undergoing viscoelastic transitions under compression. Using the combination of a Langmuir trough mounted on the inverted microscope stage of a laser scanning confocal microscope we track the motion of individual fluorescent quantum dots partly dispersed in monolayers spread at the air-water interface. From the calculated mean square displacement of the probe particles and extending a well established scheme of the generalized Stokes-Einstein relation in bulk to the interface we arrive at the viscoelastic modulus for the respective monolayers as a function of surface density. Measurements on monolayers of glassy as well as nonglassy polymers and a standard fatty acid clearly show sensitivity of our technique to subtle variations, in the viscoelastic properties of the highly confined materials under compression. Evidence for possible spatial variations of such viscoelastic properties at a given surface density for the fatty acid monolayer is also provided.
Resumo:
In this article, the problem of two Unmanned Aerial Vehicles (UAVs) cooperatively searching an unknown region is addressed. The search region is discretized into hexagonal cells and each cell is assumed to possess an uncertainty value. The UAVs have to cooperatively search these cells taking limited endurance, sensor and communication range constraints into account. Due to limited endurance, the UAVs need to return to the base station for refuelling and also need to select a base station when multiple base stations are present. This article proposes a route planning algorithm that takes endurance time constraints into account and uses game theoretical strategies to reduce the uncertainty. The route planning algorithm selects only those cells that ensure the agent will return to any one of the available bases. A set of paths are formed using these cells which the game theoretical strategies use to select a path that yields maximum uncertainty reduction. We explore non-cooperative Nash, cooperative and security strategies from game theory to enhance the search effectiveness. Monte-Carlo simulations are carried out which show the superiority of the game theoretical strategies over greedy strategy for different look ahead step length paths. Within the game theoretical strategies, non-cooperative Nash and cooperative strategy perform similarly in an ideal case, but Nash strategy performs better than the cooperative strategy when the perceived information is different. We also propose a heuristic based on partitioning of the search space into sectors to reduce computational overhead without performance degradation.
Resumo:
Grover's database search algorithm, although discovered in the context of quantum computation, can be implemented using any physical system that allows superposition of states. A physical realization of this algorithm is described using coupled simple harmonic oscillators, which can be exactly solved in both classical and quantum domains. Classical wave algorithms are far more stable against decoherence compared to their quantum counterparts. In addition to providing convenient demonstration models, they may have a role in practical situations, such as catalysis.
Resumo:
In this paper we show the applicability of Ant Colony Optimisation (ACO) techniques for pattern classification problem that arises in tool wear monitoring. In an earlier study, artificial neural networks and genetic programming have been successfully applied to tool wear monitoring problem. ACO is a recent addition to evolutionary computation technique that has gained attention for its ability to extract the underlying data relationships and express them in form of simple rules. Rules are extracted for data classification using training set of data points. These rules are then applied to set of data in the testing/validation set to obtain the classification accuracy. A major attraction in ACO based classification is the possibility of obtaining an expert system like rules that can be directly applied subsequently by the user in his/her application. The classification accuracy obtained in ACO based approach is as good as obtained in other biologically inspired techniques.
Resumo:
In this paper, we present self assessment schemes (SAS) for multiple agents performing a search mission on an unknown terrain. The agents are subjected to limited communication and sensor ranges. The agents communicate and coordinate with their neighbours to arrive at route decisions. The self assessment schemes proposed here have very low communication and computational overhead. The SAS also has attractive features like scalability to large number of agents and fast decision-making capability. SAS can be used with partial or complete information sharing schemes during the search mission. We validate the performance of SAS using simulation on a large search space consisting of 100 agents with different information structures and self assessment schemes. We also compare the results obtained using SAS with that of a previously proposed negotiation scheme. The simulation results show that the SAS is scalable to large number of agents and can perform as good as the negotiation schemes with reduced communication requirement (almost 20% of that required for negotiation).
Resumo:
We present a method to perform in situ microrheological measurements on monolayers of soft materials undergoing viscoelastic transitions under compression. Using the combination of a Langmuir trough mounted on the inverted microscope stage of a laser scanning confocal microscope we track the motion of individual fluorescent quantum dots partly dispersed in monolayers spread at the air-water interface. From the calculated mean square displacement of the probe particles and extending a well established scheme of the generalized Stokes-Einstein relation in bulk to the interface we arrive at the viscoelastic modulus for the respective monolayers as a function of surface density. Measurements on monolayers of glassy as well as nonglassy polymers and a standard fatty acid clearly show sensitivity of our technique to subtle variations, in the viscoelastic properties of the highly confined materials under compression. Evidence for possible spatial variations of such viscoelastic properties at a given surface density for the fatty acid monolayer is also provided.
Resumo:
Non-orthogonal space-time block codes (STBC) with large dimensions are attractive because they can simultaneously achieve both high spectral efficiencies (same spectral efficiency as in V-BLAST for a given number of transmit antennas) as well as full transmit diversity. Decoding of non-orthogonal STBCs with large dimensions has been a challenge. In this paper, we present a reactive tabu search (RTS) based algorithm for decoding non-orthogonal STBCs from cyclic division algebras (CDA) having largedimensions. Under i.i.d fading and perfect channel state information at the receiver (CSIR), our simulation results show that RTS based decoding of 12 X 12 STBC from CDA and 4-QAM with 288 real dimensions achieves i) 10(-3) uncoded BER at an SNR of just 0.5 dB away from SISO AWGN performance, and ii) a coded BER performance close to within about 5 dB of the theoretical MIMO capacity, using rate-3/4 turbo code at a spectral efficiency of 18 bps/Hz. RTS is shown to achieve near SISO AWGN performance with less number of dimensions than with LAS algorithm (which we reported recently) at some extra complexity than LAS. We also report good BER performance of RTS when i.i.d fading and perfect CSIR assumptions are relaxed by considering a spatially correlated MIMO channel model, and by using a training based iterative RTS decoding/channel estimation scheme.
Resumo:
Background:Bacterial non-coding small RNAs (sRNAs) have attracted considerable attention due to their ubiquitous nature and contribution to numerous cellular processes including survival, adaptation and pathogenesis. Existing computational approaches for identifying bacterial sRNAs demonstrate varying levels of success and there remains considerable room for improvement. Methodology/Principal Findings: Here we have proposed a transcriptional signal-based computational method to identify intergenic sRNA transcriptional units (TUs) in completely sequenced bacterial genomes. Our sRNAscanner tool uses position weight matrices derived from experimentally defined E. coli K-12 MG1655 sRNA promoter and rho-independent terminator signals to identify intergenic sRNA TUs through sliding window based genome scans. Analysis of genomes representative of twelve species suggested that sRNAscanner demonstrated equivalent sensitivity to sRNAPredict2, the best performing bioinformatics tool available presently. However, each algorithm yielded substantial numbers of known and uncharacterized hits that were unique to one or the other tool only. sRNAscanner identified 118 novel putative intergenic sRNA genes in Salmonella enterica Typhimurium LT2, none of which were flagged by sRNAPredict2. Candidate sRNA locations were compared with available deep sequencing libraries derived from Hfq-co-immunoprecipitated RNA purified from a second Typhimurium strain (Sittka et al. (2008) PLoS Genetics 4: e1000163). Sixteen potential novel sRNAs computationally predicted and detected in deep sequencing libraries were selected for experimental validation by Northern analysis using total RNA isolated from bacteria grown under eleven different growth conditions. RNA bands of expected sizes were detected in Northern blots for six of the examined candidates. Furthermore, the 5'-ends of these six Northern-supported sRNA candidates were successfully mapped using 5'-RACE analysis. Conclusions/Significance: We have developed, computationally examined and experimentally validated the sRNAscanner algorithm. Data derived from this study has successfully identified six novel S. Typhimurium sRNA genes. In addition, the computational specificity analysis we have undertaken suggests that similar to 40% of sRNAscanner hits with high cumulative sum of scores represent genuine, undiscovered sRNA genes. Collectively, these data strongly support the utility of sRNAscanner and offer a glimpse of its potential to reveal large numbers of sRNA genes that have to date defied identification. sRNAscanner is available from: http://bicmku.in:8081/sRNAscanner or http://cluster.physics.iisc.ernet.in/sRNAscanner/.
Resumo:
We propose a novel equalizer for ultrawideband (UWB) multiple-input multiple-output (MIMO) channels characterized by severe delay spreads. The proposed equalizer is based on reactive tabu search (RTS), which is a heuristic originally designed to obtain approximate solutions to combinatorial optimization problems. The proposed RTS equalizer is shown to perform increasingly better for increasing number of multipath components (MPC), and achieve near maximum likelihood (ML) performance for large number of MPCs at a much less complexity than that of the ML detector. The proposed RTS equalizer is shown to perform close to within 0.4 dB of single-input multiple-output AWGN performance at 10(-3) uncoded BER on a severely delay-spread UWB MIMO channel with 48 equal-energy MPCs.
Resumo:
Only a small amount (<= 3.5 mol%) of Ge can be doped in Ga2O3, Ga1.4In0.6O3 and In2O3 by means of solid state reactions at 1400 degrees C. All these samples are optically transparent in the visible range, but Ge-doped Ga2O3 and Ga1.4In0.6O3 are insulating. Only Ge-doped In2O3 exhibits a significant decrease in resistivity, the resistivity decreasing further on thermal quenching and H-2 reduction.The resistivity of 2.7% Ge-doped In2O3 after H-2 reduction shows a metallic behavior, and a resistivity of similar to 1 m Omega cm at room temperature, comparable to that of Sn-doped In2O3. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Random walks describe diffusion processes, where movement at every time step is restricted to only the neighboring locations. We construct a quantum random walk algorithm, based on discretization of the Dirac evolution operator inspired by staggered lattice fermions. We use it to investigate the spatial search problem, that is, to find a marked vertex on a d-dimensional hypercubic lattice. The restriction on movement hardly matters for d > 2, and scaling behavior close to Grover's optimal algorithm (which has no restriction on movement) can be achieved. Using numerical simulations, we optimize the proportionality constants of the scaling behavior, and demonstrate the approach to that for Grover's algorithm (equivalent to the mean-field theory or the d -> infinity limit). In particular, the scaling behavior for d = 3 is only about 25% higher than the optimal d -> infinity value.
Resumo:
We investigate the spatial search problem on the two-dimensional square lattice, using the Dirac evolution operator discretized according to the staggered lattice fermion formalism. d = 2 is the critical dimension for the spatial search problem, where infrared divergence of the evolution operator leads to logarithmic factors in the scaling behavior. As a result, the construction used in our accompanying article A. Patel and M. A. Rahaman, Phys. Rev. A 82, 032330 (2010)] provides an O(root N ln N) algorithm, which is not optimal. The scaling behavior can be improved to O(root N ln N) by cleverly controlling the massless Dirac evolution operator by an ancilla qubit, as proposed by Tulsi Phys. Rev. A 78, 012310 (2008)]. We reinterpret the ancilla control as introduction of an effective mass at the marked vertex, and optimize the proportionality constants of the scaling behavior of the algorithm by numerically tuning the parameters.