64 resultados para electrophoretic mobility


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seepage effects on the stability, mobility, and incipient motion of sand-bed particles are experimentally investigated. Seepage through a sand bed in a downward direction (suction) reduces the stability of particles, and it can even initiate their movement. The bed erosion is increased with the increased rates of suction. Whereas the seepage in an upward direction (injection) increases the stability of bed particles, it does not aid initiating their movement. The rate of bed erosion is reduced or even stopped by the increased infection rates. Hydrodynamic conditions leading to the so-called "pseudoincipient motion'' with suction (for the initiation of particles movement that are otherwise at rest under no-seepage conditions), and with injection (for only arresting the particles movement that are otherwise moving initially) are evaluated. The conventional Shields curve cannot be used to predict such pseudoincipient motion conditions with seepage. The concepts thus developed are useful for a better understanding of the sediment transport mechanics and in the design of stable alluvial channels affected by seepage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two drug-drug co-crystals of the anti-tuberculosis drugs isoniazid (INH), pyrazinamide (PYR) and 4-aminosalicylic acid (PAS) are reported. The first is the 1 : 1 molecular complex of INH and PAS. The second is the monohydrate of the 1 : 1 complex of PYR and PAS. The crystal structures of both co-crystals are characterized by a number of hydrogen bonded synthons. Hydrogen bonding of the COOH center dot center dot center dot N-pyridine type is found in both cases. In the INH : PAS co-crystal, there are two symmetry independent COOH center dot center dot center dot center dot N-pyridine hydrogen bonds. In one of these, the H-atom is located on the carboxylic group and is indicative of a co-crystal. In the second case, partial proton transfer occurs across the hydrogen bond, and the extent of proton transfer depends on the temperature. This is more indicative of a salt. Drug-drug co-crystals may have some bearing in the treatment of tuberculosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural and dynamical properties of ethane in one-dimensional channels of AlPO4-5 and carbon nanotube have been investigated at dilute concentration with the help of molecular dynamics simulation. Density distributions and orientational structure of ethane have been analyzed. Repulsive interactions seem to play an important role when ethane is located in the narrow part of the AlPO4-5 channel. In AlPO4-5, parallel orientation is predominant over perpendicular orientation except when ethane is located in the broader part of the channel. Unlike in the case of single-file diffusion, our results in carbon nanotube show that at dilute concentrations the mean squared displacement, mu(2)(t) approximate to t(alpha), alpha = 1.8. The autocorrelation function for the z-component of angular velocity of ethane in space-fixed frame of reference shows a pronounced negative correlation. This is attributed to the restriction in the movement of ethane along the x- and y- directions. It is seen that the ratio of reorientational correlation times does not follow the Debye model for confined ethane but it is closer to the predictions of the Debye model for bulk ethane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated Li+/H+ exchange in the lithium ion conductors (LISICONS) [ Li2+2xZn1-xGeO4; x = 0.5 ( I) and x = 0.75 (II)] and their parent, gamma-Li2ZnGeO4. Facile exchange of approximately 2x lithium ions per formula unit occurs with both the LISICONS in dilute acetic acid, while the parent material does not exhibit an obvious Li+/H+ exchange under the same conditions. The results can be understood in terms of lithium ion distribution in the crystal structures: the parent Li2ZnGeO4, where all the lithium ions form part of the tetrahedral framework structure, does not exhibit a ready Li+/H+ exchange; LISICONS, where lithium ions are distributed between framework ( tetrahedral) and nonframework sites, undergo a facile Li+/H+ exchange of the nonframework site lithium ions. Accordingly, Li+/H+ exchange in dilute aqueous acetic acid provides a convenient probe to distinguish between the mobile and the immobile lithium ions in lithium ion conductors.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modulation-doped two-dimensional hole gas structures consisting of a strained germanium channel on relaxed Ge0.7Si0.3 buffer layers were grown by molecular-beam epitaxy. Sample processing was optimized to substantially reduce the contribution from the parasitic conducting layers. Very high hall mobilities of 1700 cm2/V s for holes were observed at 295 K which are the highest reported to date for any kind of p-type silicon-based heterostructures. Hall measurements were carried out from 13 to 300 K to determine the temperature dependence of the mobility and carrier concentration. The carrier concentration at room temperature was 7.9×1011 cm−2 and decreased by only 26% at 13 K, indicating very little parallel conduction. The high-temperature mobility obeys a T−α behavior with α∼2, which can be attributed to intraband optical phonon scattering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this communication, we report the synthesis of a novel diketopyrrolopyrrole-diketopyrrolopyrrole (DPP-DPP)-based conjugated copolymer and its application in high-mobility organic field-effect transistors. Copolymerization of DPP with DPP yields a copolymer with exceptional properties such as extended absorption characteristics (up to similar to 1100 nm) and field-effect electron mobility values of >1 cm(2) V-1 s(-1). The synthesis of this novel DPP-DPP copolymer in combination with the demonstration of transistors with extremely high electron mobility makes this work an important step toward a new family of DPP-DPP copolymers for application in the general area of organic optoelectronics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we address a physics-based analytical model of electric-field-dependent electron mobility (mu) in a single-layer graphene sheet using the formulation of Landauer and Mc Kelvey's carrier flux approach under finite temperature and quasi-ballistic regime. The energy-dependent, near-elastic scattering rate of in-plane and out-of-plane (flexural) phonons with the electrons are considered to estimate mu over a wide range of temperature. We also demonstrate the variation of mu with carrier concentration as well as the longitudinal electric field. We find that at high electric field (>10(6) Vm(-1)), the mobility falls sharply, exhibiting the scattering between the electrons and flexural phonons. We also note here that under quasi-ballistic transport, the mobility tends to a constant value at low temperature, rather than in between T-2 and T-1 in strongly diffusive regime. Our analytical results agree well with the available experimental data, while the methodologies are put forward to estimate the other carrier-transmission-dependent transport properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a simple second-order, curvature based mobility analysis of planar curves in contact. The underlying theory deals with penetration and separation of curves with multiple contacts, based on relative configuration of osculating circles at points of contact for a second-order rotation about each point of the plane. Geometric and analytical treatment of mobility analysis is presented for generic as well as special contact geometries. For objects with a single contact, partitioning of the plane into four types of mobility regions has been shown. Using point based composition operations based on dual-number matrices, analysis has been extended to computationally handle multiple contacts scenario. A novel color coded directed line has been proposed to capture the contact scenario. Multiple contacts mobility is obtained through intersection of the mobility half-spaces. It is derived that mobility region comprises a pair of unbounded or a single bounded convex polygon. The theory has been used for analysis and synthesis of form closure configurations, revolute and prismatic kinematic pairs. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Differential mobility analyzers (DMAs) are commonly used to generate monodisperse nanoparticle aerosols. Commercial DMAs operate at quasi-atmospheric pressures and are therefore not designed to be vacuum-tight. In certain particle synthesis methods, the use of a vacuum-compatible DMA is a requirement as a process step for producing high-purity metallic particles. A vacuum-tight radial DMA (RDMA) has been developed and tested at low pressures. Its performance has been evaluated by using a commercial NANO-DMA as the reference. The performance of this low-pressure RDMA (LP-RDMA) in terms of the width of its transfer function is found to be comparable with that of other NANO-DMAs at atmospheric pressure and is almost independent of the pressure down to 30 mbar. It is shown that LP-RDMA can be used for the classification of nanometer-sized particles (5-20 nm) under low pressure condition (30 mbar) and has been successfully applied to nanoparticles produced by ablating FeNi at low pressures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current organic semiconductors for organic photovoltaics (OPV) have relative dielectric constants (relative permittivities, epsilon(r)) in the range of 2-4. As a consequence, Coulombically bound electron-hole pairs (excitons) are produced upon absorption of light, giving rise to limited power conversion efficiencies. We introduce a strategy to enhance epsilon(r) of well-known donors and acceptors without breaking conjugation, degrading charge carrier mobility or altering the transport gap. The ability of ethylene glycol (EG) repeating units to rapidly reorient their dipoles with the charge redistributions in the environment was proven via density functional theory (DFT) calculations. Fullerene derivatives functionalized with triethylene glycol side chains were studied for the enhancement of epsilon(r) together with poly(p-phenylene vinylene) and diketo-pyrrolopyrrole based polymers functionalized with similar side chains. The polymers showed a doubling of epsilon(r) with respect to their reference polymers in identical backbone. Fullerene derivatives presented enhancements up to 6 compared with phenyl-C-61-butyric acid methyl ester (PCBM) as the reference. Importantly, the applied modifications did not affect the mobility of electrons and holes and provided excellent solubility in common organic solvents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reaction between 4,4'-sulfonyldibenzoic acid (H(2)SDBA) and manganese under mild conditions resulted in the isolation of two new three-dimensional compounds, Mn-4(C14H8O6S)(4)(DMA)(2)]center dot 3DMA, I, and Mn-3(C14H8O6S)(3)(DMA)(2)(MeOH)]center dot DMA, IIa. Both structures have Mn-3 trimer oxo cluster units. While the Mn-3 oxoclusters are connected through octahedral manganese forming one-dimensional Mn-O-Mn chains in I, the Mn-3 units are isolated in IIa. The SDBA units connect the Mn-O-Mn chains and the Mn-3 clusters giving rise to the three-dimensional structure. Both compounds have coordinated and free solvent molecules. In IIa, two different solvent molecules are coordinated, of which one solvent can be reversibly exchanged by a variety of other similar solvents via a solvent-mediated single crystal to single crystal (SCSC) transformation. The free lattice DMA solvent molecules in I can be exchanged by water molecules resulting in hydrophilic channels. Proton conductivity studies on I reveals a high proton mobility with conductivity values of similar to 0.87 x 10(-3) Omega(-1) cm(-1) at 34 degrees C and 98% RH, which is comparable to some of the good proton conductivity values observed in inorganic coordination polymers. We have also shown structural transformation of I to IIa through a possible dissolution and recrystallization pathway. In addition, both I and IIa appear to transform to two other manganese compounds H3O]Mn-3(mu(3)-OH)(C14H8O6S)(3)(H2O)](DMF)(5) and H3O](2)Mn-7(mu 3-OH)(4)(C14H8O6S)(6)(H2O)(4)](H2O)(2)(DMF)(8) under suitable reaction conditions. We have partially substituted Co in place of Mn in the Mn-3 trimer clusters forming CoMn2(C14H8O6S)(3)(DMA)(2)(EtOH)]center dot DMA, III, a structure that is closely related to IIa. All the compounds reveal antiferromagnetic behavior. On heating, the cobalt substituted phase (compound III) forms a CoMn2O4 spinel phase with particle sizes in the nanometer range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The advent of a new class of high-mobility semiconducting polymers opens up a window to address fundamental issues in electrical transport mechanism such as transport between localized states versus extended state conduction. Here, we investigate the origin of the ultralow degree of disorder (E-a similar to 16 meV) and the ``bandlike'' negative temperature (T) coefficient of the field effect electron mobility: mu(e)(FET) (T) in a high performance (mu(e)(FET) > 2.5 cm(2) V-1 s(-1)) diketopyrrolopyrrole based semiconducting polymer. Models based on the framework of mobility edge with exponential density of states are invoked to explain the trends in transport. The temperature window over which the system demonstrates delocalized transport was tuned by a systematic introduction of disorder at the transport interface. Additionally, the Hall mobility (mu(e)(Hall)) extracted from Hall voltage measurements in these devices was found to be comparable to field effect mobility (mu(e)(FET)) in the high T bandlike regime. Comprehensive studies with different combinations of dielectrics and semiconductors demonstrate the effectiveness of rationale molecular design, which emphasizes uniform-energetic landscape and low reorganization energy.