75 resultados para driving under the influence
Resumo:
A distinctive feature of the Nhecolandia, a sub-region of the Pantanal wetland in Brazil, is the presence of both saline and freshwater lakes. Saline lakes used to be attributed to a past and phase during the Pleistocene. However, recent studies have shown that saline and fresh water lakes are linked by a continuous water table, indicating that saline water could come from a contemporary concentration process. This concentration process could also be responsible for the large chemical variability of the waters observed in the area. A regional water sampling has been conducted in surface and sub-surface water and the water table, and the results of the geochemical and statistical analysis are presented. Based on sodium contents, the concentration shows a 1: 4443 ratio. All the samples belong to the same chemical family and evolve in a sodic alkaline manner. Calcite or magnesian calcite precipitates very early in the process of concentration, probably followed by the precipitation of magnesian silicates. The most concentrated solutions remain under-saturated with respect to the sodium carbonate salt, even if this equilibrium is likely reached around the saline lakes. Apparently, significant amounts of sulfate and chloride are lost simultaneously from the solutions, and this cannot be explained solely by evaporative concentration. This could be attributed to the sorption on reduced minerals in a green sub-surface horizon in the "cordilhieira" areas. In the saline lakes, low potassium, phosphate, magnesium, and sulfate are attributed to algal blooms. Under the influence of evaporation, the concentration of solutions and associated chemical precipitations are identified as the main factors responsible for the geochemical variability in this environment (about 92 % of the variance). Therefore, the saline lakes of Nhecolandia have to be managed as landscape units in equilibrium with the present water flows and not inherited from a past and phase. In order to elaborate hydrochemical tracers for a quantitative estimation of water flows, three points have to be investigated more precisely: (1) the quantification of magnesium involved in the Mg-calcite precipitation; (2) the identification of the precise stoichiometry of the Mg-silicate; and (3) the verification of the loss of chloride and sulfate by sorption onto labile iron minerals.
Resumo:
The sulfur atom in the substrates leads to modest enhancements in the titled phenomena: these are essentially derived from favourable enthalpies of activation, the negative entropies of activation possibly indicating a measure of stereoelectronic control.
Resumo:
The influence of residual oxygen in nitrogen on the formation of AlN-Al matrix by reactive infiltration has been investigated. Increasing the oxygen content from 10 ppm upwards decreased the nitride content in the matrix from 64 to 6%, Based on the analysis of the availability of oxygen at the Al-melt/gas interface, three distinct scenarios have been proposed (i) at lowest values, oxygen does not interfere with either infiltration or nitridation reaction; (ii) at intermediate values, nitridation is suppressed, however infiltration continues; and (iii) at a critical upper value, the melt passivates without any infiltration. This phenomenon offers control of the AlN/Al ratio in the matrix and the possibility of creation of microstructural gradierits by the appropriate choice of gas mixtures. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A systematic study on the variation of Mössbauer hyperfine parameters with grain size in nanocrystalline zinc ferrite is lacking. In the present study, nanocrystalline ZnFe2O4 ferrites with different grain sizes were prepared by ball-milling technique and characterised by X-ray, EDAX, magnetisation and Mössbauer studies. The grain size decreases with increasing milling time and lattice parameter is found to be slightly higher than the bulk value. Magnetisation at room temperature (RT) and at 77 K could not be saturated with a magnetic field of 7 kOe and the observed magnetisation at these temperatures can be explained on the basis of deviation of cation distribution from normal spinel structure. The Mössbauer spectra were recorded at different temperatures between RT and 16 K. The values of quadrupole splitting at RT are higher for the milled samples indicating the disordering of ZnFe2O4 on milling. The strength of the magnetic hyperfine interactions increases with grain size reduction and this can be explained on the basis of the distribution of Fe3+ ions at both tetrahedral and octahedral sites.
Resumo:
It is well know that grain boundaries enhance strength at low temperatures by acting as obstacles to dislocation motion, and they retard strength at higher temperatures by processes involving grain boundary sliding. The available data on the influence of grain boundaries on deformation in copper is summarized. Equi-channel angular extrusion offers a convenient means for imposing severe plastic deformation to refine the grain size in bulk materials. Experimental data on fine grained copper produced by equi-channel angular extrusion will be described, and the implications of the data for diffusion creep and superplasticity will be discussed.
Strongly magnetized cold degenerate electron gas: Mass-radius relation of the magnetized white dwarf
Resumo:
We consider a relativistic, degenerate electron gas at zero temperature under the influence of a strong, uniform, static magnetic field, neglecting any form of interactions. Since the density of states for the electrons changes due to the presence of the magnetic field (which gives rise to Landau quantization), the corresponding equation of state also gets modified. In order to investigate the effect of very strong magnetic field, we focus only on systems in which a maximum of either one, two, or three Landau level(s) is/are occupied. This is important since, if a very large number of Landau levels are filled, it implies a very low magnetic field strength which yields back Chandrasekhar's celebrated nonmagnetic results. The maximum number of occupied Landau levels is fixed by the correct choice of two parameters, namely, the magnetic field strength and the maximum Fermi energy of the system. We study the equations of state of these one-level, two-level, and three-level systems and compare them by taking three different maximum Fermi energies. We also find the effect of the strong magnetic field on the mass-radius relation of the underlying star composed of the gas stated above. We obtain an exciting result that it is possible to have an electron-degenerate static star, namely, magnetized white dwarfs, with a mass significantly greater than the Chandrasekhar limit in the range 2.3-2.6M(circle dot), provided it has an appropriate magnetic field strength and central density. In fact, recent observations of peculiar type Ia supernovae-SN 2006gz, SN 2007if, SN 2009dc, SN 2003fg-seem to suggest super-Chandrasekhar-mass white dwarfs with masses up to 2.4-2.8M(circle dot) as their most likely progenitors. Interestingly, our results seem to lie within these observational limits.
Resumo:
A lightning strike in the neighborhood can induce significant currents in tall down conductors. Though the magnitude of induced current in this case is much smaller than that encountered during a direct strike, the probability of occurrence and the frequency content is higher. In view of this, appropriate knowledge on the characteristics of such induced currents is relevant for the scrutiny of the recorded currents and in the evaluation of interference to the electrical and electronic system in the vicinity. Previously, a study was carried out on characteristics of induced currents assuming ideal conditions, that there were no influencing objects in the vicinity of the down conductor and channel. However, some influencing conducting bodies will always be present, such as trees, electricity and communication towers, buildings, and other elevated objects that can affect the induced currents in a down conductor. The present work is carried out to understand the influence of nearby conducting objects on the characteristics of induced currents due to a strike to ground in the vicinity of a tall down conductor. For the study, an electromagnetic model is employed to model the down conductor, channel, and neighboring conducting objects, and Numerical Electromagnetic Code-2 is used for numerical field computations. Neighboring objects of different heights, of different shapes, and at different locations are considered. It is found that the neighboring objects have significant influence on the magnitude and nature of induced currents in a down conductor when the height of the nearby conducting object is comparable to that of the down conductor.
Resumo:
In this paper, we study the diversity-multiplexing-gain tradeoff (DMT) of wireless relay networks under the half-duplex constraint. It is often unclear what penalty if any, is imposed by the half-duplex constraint on the DMT of such networks. We study two classes of networks; the first class, called KPP(I) networks, is the class of networks with the relays organized in K parallel paths between the source and the destination. While we assume that there is no direct source-destination path, the K relaying paths can interfere with each other. The second class, termed as layered networks, is comprised of relays organized in layers, where links exist only between adjacent layers. We present a communication scheme based on static schedules and amplify-and-forward relaying for these networks. We also show that for KPP(I) networks with K >= 3, the proposed schemes can achieve full-duplex DMT performance, thus demonstrating that there is no performance hit on the DMT due to the half-duplex constraint. We also show that, for layered networks, a linear DMT of d(max)(1 - r)(+) between the maximum diversity d(max) and the maximum MG, r(max) = 1 is achievable. We adapt existing DMT optimal coding schemes to these networks, thus specifying the end-to-end communication strategy explicitly.
Resumo:
The polyamidoamine (PAMAM) dendrimer prevents HIV-1 entry into target cells in vitro. Its mechanism of action, however, remains unclear and precludes the design of potent dendrimers targeting HIV-1 entry. We employed steered molecular dynamics simulations to examine whether the HIV-1 gp120-CD4 complex is a target of PAMAM. Our simulations mimicked single molecule force spectroscopy studies of the unbinding of the gp120-CD4 complex under the influence of a controlled external force. We found that the complex dissociates via complex pathways and defies the standard classification of adhesion molecules as catch and slip bonds. When the force loading rate was large, the complex behaved as a slip bond, weakening gradually. When the loading rate was small, the complex initially strengthened, akin to a catch bond, but eventually dissociated over shorter separations than with large loading rates. PAMAM docked to gp120 and destabilized the gp120-CD4 complex. The rupture force of the complex was lowered by PAMAM. PAMAM disrupted salt bridges and hydrogen bonds across the gp120-CD4 interface and altered the hydration pattern of the hydrophobic cavity in the interface. In addition, intriguingly, PAMAM suppressed the distinction in the dissociation pathways of the complex between the small and large loading rate regimes. Taken together, our simulations reveal that PAMAM targets the gp120-CD4 complex at two levels: it weakens the complex and also alters its dissociation pathway, potentially inhibiting HIV-1 entry.
Resumo:
In this article, we present an exact theoretical analysis of an system, with arbitrary distribution of relative deadline for the end of service, operated under the first come first served scheduling policy with exact admission control. We provide an explicit solution to the functional equation that must be satisfied by the workload distribution, when the system reaches steady state. We use this solution to derive explicit expressions for the loss ratio and the sojourn time distribution. Finally, we compare this loss ratio with that of a similar system operating without admission control, in the cases of some common distributions of the relative deadline.