81 resultados para design and build
Resumo:
Performance improvement of a micromachined patch antenna operating at 30 GHz with a capacitively coupled feed arrangement is presented here. Such antennas are useful for monolithic integration with active components. Specifically, micromachining can be employed to achieve a low dielectric constant region under the patch which causes (i) the suppression of surface waves and hence the increase in radiation efficiency and (ii) increase in the bandwidth. The performance of such a patch antenna can be significantly improved by selecting a coupled feed arrangement. We have optimized the dimensions and location of the capacitive feeding strip to get the maximum improvement in bandwidth. Since this is a totally planar arrangement, and does not involve any stacked structures, this antenna is easy to fabricate using standard microfabrication techniques. The antenna element thus designed has a -10 dB bandwidth of 1600 MHz
Resumo:
Pulse Forming Line (PFL) based high voltage pulsed power systems are well suited for low impedance High Power Microwave (HPM) sources such as a virtual cathode oscillator (VIRCATOR) operating in nanosecond regimes. The system under development consists of a primary voltage source that charges the capacitor bank of a Marx pulser over a long time duration. The Marx pulser output is then conditioned by a PFL to match the requirement of the HPM diode load. This article describes the design and construction of an oil insulated pulse forming line for a REB (Relativistic Electron Beam) diode used in a VIRCATOR for the generation of high power microwaves. Design of a 250 kV/10 kA/60 ns PFL, including the PSPICE simulation for various load conditions are described.
Resumo:
The design and operation of the minimum cost classifier, where the total cost is the sum of the measurement cost and the classification cost, is computationally complex. Noting the difficulties associated with this approach, decision tree design directly from a set of labelled samples is proposed in this paper. The feature space is first partitioned to transform the problem to one of discrete features. The resulting problem is solved by a dynamic programming algorithm over an explicitly ordered state space of all outcomes of all feature subsets. The solution procedure is very general and is applicable to any minimum cost pattern classification problem in which each feature has a finite number of outcomes. These techniques are applied to (i) voiced, unvoiced, and silence classification of speech, and (ii) spoken vowel recognition. The resulting decision trees are operationally very efficient and yield attractive classification accuracies.
Resumo:
Principles of design of composite instantaneous comparators (a combination of amplitude- and phase- comparison techniques) are laid out to provide directional, directional-reactance, nonoffset-resistance and conductance characteristices. The respective signals provided by the voltage transformer and the current transformer are directly used as relaying signals without resorting to any form of mixing. Phase shifts required, are obtained by using magnetic ferrite cores in a novel manner. Sampling units employing a combination of ferrite cores and semiconductor devices provide highly reliable designs. Special attention is paid to the choice of relaying signals, to eliminate the need for any synchronisation or modification and to avoid `image¿ characteristics. These factors have resulted in a considerable simplification of the practical circuitry. A thyristor AND circuit is employed in dual comparator units to provide the final tripping, and leads to a circuit which is much less sensitive to extraneous signals than a single-thyristor unit.
Resumo:
This paper presents the design and performance analysis of a detector based on suprathreshold stochastic resonance (SSR) for the detection of deterministic signals in heavy-tailed non-Gaussian noise. The detector consists of a matched filter preceded by an SSR system which acts as a preprocessor. The SSR system is composed of an array of 2-level quantizers with independent and identically distributed (i.i.d) noise added to the input of each quantizer. The standard deviation sigma of quantizer noise is chosen to maximize the detection probability for a given false alarm probability. In the case of a weak signal, the optimum sigma also minimizes the mean-square difference between the output of the quantizer array and the output of the nonlinear transformation of the locally optimum detector. The optimum sigma depends only on the probability density functions (pdfs) of input noise and quantizer noise for weak signals, and also on the signal amplitude and the false alarm probability for non-weak signals. Improvement in detector performance stems primarily from quantization and to a lesser extent from the optimization of quantizer noise. For most input noise pdfs, the performance of the SSR detector is very close to that of the optimum detector. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Several research groups have attempted to optimize photopolymerization parameters to increase the throughput of scanning based microstereolithography (MSL) systems through modified beam scanning techniques. Efforts in reducing the curing line width have been implemented through high numerical aperture (NA) optical setups. However, the intensity contour symmetry and the depth of field of focus have led to grossly non-vertical and non-uniform curing profiles. This work tries to review the photopolymerization process in a scanning based MSL system from the aspect of material functionality and optical design. The focus has been to exploit the rich potential of photoreactor scanning system in achieving desired fabrication modalities (minimum curing width, uniform depth profile, and vertical curing profile) even with a reduced NA optical setup and a single movable stage. The present study tries to manipulate to its advantage the effect of optimized lower c] (photoinitiator (PI) concentration) in reducing the minimum curing width to similar to 10-20 mu m even with a higher spot size (similar to 21.36 mu m) through a judiciously chosen ``monomer-PI'' system. Optimization on grounds of increasing E-max (maximum laser exposure energy at surface) by optimizing the scan rate provides enough time for the monomer or resin to get cured across the entire resist thickness (surface to substrate similar to 10-100 mu m), leading to uniform depth profiles along the entire scan lengths. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4750975]
Resumo:
The design and synthesis of an intensely blue rhodium(III) complex 3]+ of a new N,N-donor ligand, 8-(quinolin-8-ylamino)pyrido2,1-c]1,2,4]benzotriazin-11-ium, 2]+, which contains a planar pendant triazinium arm, is described. Structural characterization for 3]+ was carried out by using various spectroscopic techniques and single-crystal X-ray crystallography. The organometallic rhodium(III) compound shows a ligand-based reversible reduction at 0.65 V. The electrochemically reduced compound displays a single-line EPR spectrum that signifies the formation of ligand-based free radicals. Compound 3]+ shows a binding propensity to calf thymus DNA to give a Kapp value of 6.05X105 M1. The parent triazinium salt, pyrido2,1-c]1,2,4]benzotriazin-11-ium 1]+ and the ligand salt 2]+ exhibit photoinduced cleavage of DNA in UV-A light, whereas the reference Rh complex 3]+ photocleaves DNA with red light (647.1 nm). The compounds show photonuclease activities under both aerobic and anaerobic conditions. Mechanistic investigations under aerobic conditions with several inhibitors indicate the formation of hydroxyl radicals by means of a photoredox pathway. Under anaerobic conditions, it is believed that a photoinduced oxidation of DNA mechanism is operative. Compound 3]+ exhibits photocytotoxicity in HeLa cervical cancer cells to give IC50 values of (12+/-0.9) mu M in UV-A light at 365 nm and (31.4+/-1.1) mu M in the dark.
Resumo:
We report the design and development of a self-contained multi-band receiver (MBR) system, intended for use with a single large aperture to facilitate sensitive and high time-resolution observations simultaneously in 10 discrete frequency bands sampling a wide spectral span (100-1500 MHz) in a nearly log-periodic fashion. The development of this system was primarily motivated by need for tomographic studies of pulsar polar emission regions. Although the system design is optimized for the primary goal, it is also suited for several other interesting astronomical investigations. The system consists of a dual-polarization multi-band feed (with discrete responses corresponding to the 10 bands pre-selected as relatively radio frequency interference free), a common wide-band radio frequency front-end, and independent back-end receiver chains for the 10 individual sub-bands. The raw voltage time sequences corresponding to 16 MHz bandwidth each for the two linear polarization channels and the 10 bands are recorded at the Nyquist rate simultaneously. We present the preliminary results from the tests and pulsar observations carried out with the Robert C. Byrd Green Bank Telescope using this receiver. The system performance implied by these results and possible improvements are also briefly discussed.
Resumo:
Clock synchronisation is an important requirement for various applications in wireless sensor networks (WSNs). Most of the existing clock synchronisation protocols for WSNs use some hierarchical structure that introduces an extra overhead due to the dynamic nature of WSNs. Besides, it is difficult to integrate these clock synchronisation protocols with sleep scheduling scheme, which is a major technique to conserve energy. In this paper, we propose a fully distributed peer-to-peer based clock synchronisation protocol, named Distributed Clock Synchronisation Protocol (DCSP), using a novel technique of pullback for complete sensor networks. The pullback technique ensures that synchronisation phases of any pair of clocks always overlap. We have derived an exact expression for a bound on maximum synchronisation error in the DCSP protocol, and simulation study verifies that it is indeed less than the computed upper bound. Experimental study using a few TelosB motes also verifies that the pullback occurs as predicted.
Resumo:
This paper presents a new approach for Optical Beam steering using 1-D linear arrays of curved wave guides as delay line. The basic structure for generating delay is the curved/bent waveguide and hence its Analytical modelling involves evaluation of mode profiles, propagation constants and losses become important. This was done by solving the dispersion equation of a bent waveguide with specific refractive index profiles. The phase shifts due to S-bends are obtained and results are compared with theoretical values. Simulations in 2-D are done using BPM and Matlab.
Resumo:
We propose a new method for design of computationally efficient nonsubsampled multiscale multidirectional filter bank with perfect reconstruction (PR). This filter bank is composed of two nonsubsampled filter banks, for multiscale decomposition and for directional expansion. For multiscale decomposition, we transform the 1-D equivalent subband filters directly into 2-D equivalent subband filters. The computational cost is considerably reduced by avoiding the computation of 2-D convolutions. The multidirectional decomposition utilizes fan filters. A new method for design of 2-D zero phase FIR fan filter transformation function is developed. This method also aids the transformation of a 1-D filter bank to a 2-D multidirectional filter bank. The potential application of the proposed filter bank is illustrated by comparing the image denoising performance of the proposed filter bank with other design method that exist in available literature.
Resumo:
Inspired by the Brazilian disk geometry we examine the utility of an edge cracked semicircular disk (ECSD) specimen for rapid assessment of fracture toughness of brittle materials using compressive loading. It is desirable to optimize the geometry towards a constant form factor F for evaluating K-I. In this investigation photoelastic and finite element results for K-I evaluation highlight the effect of loading modeled using a Hertzian. A Hertzian loading subtending 4 degrees at the center leads to a surprisingly constant form factor of 1.36. This special case is further analyzed by applying uniform pressure over a chord for facilitating testing.
Resumo:
Multi-packet reception (MPR) promises significant throughput gains in wireless local area networks (WLANs) by allowing nodes to transmit even in the presence of ongoing transmissions in the medium. However, the medium access control (MAC) layer must now be redesigned to facilitate rather than discourage - these overlapping transmissions. We investigate asynchronous MPR MAC protocols, which successfully accomplish this by controlling the node behavior based on the number of ongoing transmissions in the channel. The protocols use the backoff timer mechanism of the distributed coordination function, which makes them practically appealing. We first highlight a unique problem of acknowledgment delays, which arises in asynchronous MPR, and investigate a solution that modifies the medium access rules to reduce these delays and increase system throughput in the single receiver scenario. We develop a general renewal-theoretic fixed-point analysis that leads to expressions for the saturation throughput, packet dropping probability, and average head-of-line packet delay. We also model and analyze the practical scenario in which nodes may incorrectly estimate the number of ongoing transmissions.