170 resultados para degradation gradient
Resumo:
The photocatalytic degradation of nitrobenzene and substituted nitrobenzenes under UV exposure was investigated with combustion synthesized nano-TiO2 and commercial TiO2 catalyst, Degussa P-25. The experimental data indicated that the photodegradation kinetics was first order. The photocatalytic degradation rates were considerably higher when catalyzed with combustion synthesized TiO2 compared to that of Degussa P-25. The degradation rate coefficients followed the order: 1-chloro,14-dinitrobenzene similar or equal to 4-nitrophenot > 2-nitrophenol > 1-chloro.4-nitrobenzene > 3-niti-ophenol > 2,4-dinitrophenol > 1-chloro,2-nitrobenzene > nitrobenzene > 1,3-dinitrobenzene. Plausible mechanisms and reasons for the observation of the above order are discussed.
Resumo:
The ultrasonic degradation of two dyes, Rhodamine B (C28H31ClN2O3) and Rhodamine Blue (C28H32N2O3), were studied in the absence of catalyst and in the presence of two catalysts (combustion-synthesized anatase TiO2 and commercial Degussa P-25 TiO2. The rate of degradation of catalyzed reaction was higher than that obtained with in the absence of the catalysts. Among the catalysts, combustion-synthesized anatase TiO2 degraded the dyes faster when compared to the degradation with commercial Degussa P-25 catalyst. A Langmuir-Hinshelwood kinetic model was developed and the kinetic rate parameters were determined. The effect of other operating parameters, such as initial concentration, pH, temperature, and power intensity, was also investigated. The degradation rate increased with decreasing pH, increasing temperature, and higher intensity.
Resumo:
A pulsed field gradient spin echo NMR spectrometer has been assembled by interfacing a programmable pulse generator and a data acquisition system designed and fabricated in our laboratory with other imported units. Calibration results of the magnetic field gradients are presented.
Resumo:
The ultrasonic degradation of two dyes, Rhodamine B (C28H31ClN2O3) and Rhodamine Blue (C28H32N2O3), were studied in the absence of catalyst and in the presence of two catalysts (combustion-synthesized anatase TiO2 and commercial Degussa P-25 TiO2. The rate of degradation of catalyzed reaction was higher than that obtained with in the absence of the catalysts. Among the catalysts, combustion-synthesized anatase TiO2 degraded the dyes faster when compared to the degradation with commercial Degussa P-25 catalyst. A Langmuir-Hinshelwood kinetic model was developed and the kinetic rate parameters were determined. The effect of other operating parameters, such as initial concentration, pH, temperature, and power intensity, was also investigated. The degradation rate increased with decreasing pH, increasing temperature, and higher intensity.
Resumo:
The calculation of the transitional boundary layer requires estimates of the extent of the transition zone, which in turn depends on the rate at which turbulent spots are formed. This rate has been found to scale with local boundary layer thickness and viscosity, and the resulting nondimensional group (called crumble) is a function of the pressure gradient, among other parameters. Available experimental data are analyzed to show that the crumble increases slowly with increasing favorable pressure gradients, being about four times as large as in constant-pressure flow when the Thwaites pressure gradient parameter at the effective origin of the resulting turbulent boundary layer is 0.1 and when transition is driven by free-stream turbulence.
Resumo:
Several samples of poly(vinyl formal) having the same vinyl alcohol content (8–9%) but varying contents of vinyl acetate (6–22%) and vinyl formol (70–85%) were prepared and subjected to thermogravimetric analysis, in air and nitrogen atmospheres, employing both isothermal and dynamic methods. Kinetic parameters determined from both the isothermal and dynamic TGA data are compared. The activation energy is seen to be largely dependent on the degree of conversion, implying a complex degradation reaction. The activation energy is also much less for degradation in air than in nitrogen, which can be explained by a reaction with oxygen-producing structures favoring degradation. The activation energy is less sensitive to variation in polymer composition for degradation in air than in nitrogen. Thus, in the dynamic process, the activation energy value decreases (from 36 to 23 kcal/mole) with increasing acetate content (from 6 to 22%) in nitrogen atmosphere, while in air the activation energy value increases only moderately (from 21 to 27 kcal/mole) with increasing acetate content (from 6 to 22%). The order of reaction is nearly unity, irrespective of the composition of the polymer, both in air and nitrogen.
Resumo:
Several samples of poly(vinyl formal) having the same vinyl alcohol content (8–9%) but varying contents of vinyl acetate (6–22%) and vinyl formol (70–85%) were prepared and subjected to thermogravimetric analysis, in air and nitrogen atmospheres, employing both isothermal and dynamic methods. Kinetic parameters determined from both the isothermal and dynamic TGA data are compared. The activation energy is seen to be largely dependent on the degree of conversion, implying a complex degradation reaction. The activation energy is also much less for degradation in air than in nitrogen, which can be explained by a reaction with oxygen-producing structures favoring degradation. The activation energy is less sensitive to variation in polymer composition for degradation in air than in nitrogen. Thus, in the dynamic process, the activation energy value decreases (from 36 to 23 kcal/mole) with increasing acetate content (from 6 to 22%) in nitrogen atmosphere, while in air the activation energy value increases only moderately (from 21 to 27 kcal/mole) with increasing acetate content (from 6 to 22%). The order of reaction is nearly unity, irrespective of the composition of the polymer, both in air and nitrogen.
Resumo:
The mechano-chemical degradation of poly(methyl methacrylate) (PMMA), poly(ethyl methacrylate) (PEMA) and poly(n-butyl methacrylate) (PBMA) using ultrasound (US), ultraviolet (UV) radiation and a photoinitiator (benzoin) has been investigated. The degradation of the polymers was monitored using the reduction in number average molecular weight (M-n) and polydispersity (PDI). A degradation mechanism that included the decomposition of the initiator, generation of polymer radicals by the hydrogen abstraction of initiator radicals, reversible chain transfer between stable polymer and polymer radicals was proposed. The mechanism assumed mid-point chain scission due to US and random scission due to UV radiation. A series of experiments with different initial M-n of the polymers were performed and the results indicated that, irrespective of the initial PDI, the PDI during the sono-photooxidative degradation evolved to a steady state value of 1.6 +/- 0.05 for all the polymers. This steady state evolution of PDI was successfully predicted by the continuous distribution kinetics model. The rate coefficients of polymer scission due to US and UV exhibited a linear increase and decrease with the size of the alkyl group of the poly(alkyl methacrylate)s, respectively. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Extensive measurements of columnar aerosol optical depth (AOD), composite (M-T) and black carbon aerosol mass (M-B) concentrations were made over the tropical Indian and Southern Oceans as a part of the Pilot Expedition to the Southern Ocean during the boreal winter. The AOD, M-T and M-B show large latitudinal gradient towards south up to ITCZ. Beyond ITCZ, up to 56 degrees S, AOD and M-B show very low and steady values. However M-T shows large variations in the Southern Ocean due to the enhanced production of sea salt aerosols associated with high sea surface winds. The short wave aerosol radiative forcing at the surface over north of equator is in the range - 10 to -23 W m(-2), whereas that over the Southern Ocean was in the range -4 to -5 W m(-2). The corresponding atmospheric forcing was in the range of 6-13 W m(-2) and 0.8-1.4 W m(-2). This large north south change in the aerosol radiative forcing has important implications to the meridional circulation and hence to climate.
Resumo:
An oxidative pathway hitherto unknown for tile degradation of a sesquiterpene alcohol, nerolidol (I) by Alcaligenes eutrophus is presented. Fermentation of nerolidol (I) by this organism in a mineral salts medium resulted in the formation of geranylacetone (II) and an optically active alcohol (S)-(+)-geranylacetol (III), as major metabolites. Nerolidol (I) induced cells readily transformed 1,2-epoxynerolidol (IV) and 1,2-dihydroxynerolidol (V) into geranylacetone (II). These cells also exhibited their ability to carry out stereospecific reduction of II into (S)-(+)-geranylacetol (III). Oxygen uptake studies clearly indicated that nerolidol induced cells oxidized compounds II, III, IV, V and ethyleneglycol. Based on these observations a new oxidative pathway for the degradation of I is suggested which envisages the epoxidation of the terminal double bond, opening of the epoxide and cleavage between C-2 and C-3 in a manner similar to the periodate oxidation of diol.