68 resultados para decision trees
Resumo:
In this paper we study an LMS-DFE. We use the ODE framework to show that the LMS-DFE attractors are close to the true DFE Wiener filter (designed considering the decision errors) at high SNR. Therefore, via LMS one can obtain a computationally efficient way to obtain the true DFE Wiener filter under high SNR. We also provide examples to show that the DFE filter so obtained can significantly outperform the usual DFE Wiener filter (designed assuming perfect decisions) at all practical SNRs. In fact, the performance improvement is very significant even at high SNRs (up to 50%), where the popular Wiener filter designed with perfect decisions, is believed to be closer to the optimal one.
Resumo:
This study describes the design and implementation of DSS for assessment of Mini, Micro and Small Schemes. The design links a set of modelling, manipulation, spatial analyses and display tools to a structured database that has the facility to store both observed and simulated data. The main hypothesis is that this tool can be used to form a core of practical methodology that will result in more resilient in less time and can be used by decision-making bodies to assess the impacts of various scenarios (e.g.: changes in land use pattern) and to review, cost and benefits of decisions to be made. It also offers means of entering, accessing and interpreting the information for the purpose of sound decision making. Thus, the overall objective of this DSS is the development of set of tools aimed at transforming data into information and aid decisions at different scales.
Resumo:
Electricity appears to be the energy carrier of choice for modern economics since growth in electricity has outpaced growth in the demand for fuels. A decision maker (DM) for accurate and efficient decisions in electricity distribution requires the sector wise and location wise electricity consumption information to predict the requirement of electricity. In this regard, an interactive computer-based Decision Support System (DSS) has been developed to compile, analyse and present the data at disaggregated levels for regional energy planning. This helps in providing the precise information needed to make timely decisions related to transmission and distribution planning leading to increased efficiency and productivity. This paper discusses the design and implementation of a DSS, which facilitates to analyse the consumption of electricity at various hierarchical levels (division, taluk, sub division, feeder) for selected periods. This DSS is validated with the data of transmission and distribution systems of Kolar district in Karnataka State, India.
Resumo:
Evaluation of the probability of error in decision feedback equalizers is difficult due to the presence of a hard limiter in the feedback path. This paper derives the upper and lower bounds on the probability of a single error and multiple error patterns. The bounds are fairly tight. The bounds can also be used to select proper tap gains of the equalizer.
Resumo:
Process control rules may be specified using decision tables. Such a specification is superior when logical decisions to be taken in control dominate. In this paper we give a method of detecting redundancies, incompleteness, and contradictions in such specifications. Using such a technique thus ensures the validity of the specifications.
Resumo:
We develop an online actor-critic reinforcement learning algorithm with function approximation for a problem of control under inequality constraints. We consider the long-run average cost Markov decision process (MDP) framework in which both the objective and the constraint functions are suitable policy-dependent long-run averages of certain sample path functions. The Lagrange multiplier method is used to handle the inequality constraints. We prove the asymptotic almost sure convergence of our algorithm to a locally optimal solution. We also provide the results of numerical experiments on a problem of routing in a multi-stage queueing network with constraints on long-run average queue lengths. We observe that our algorithm exhibits good performance on this setting and converges to a feasible point.
Resumo:
Tropical tree species vary widely in their pattern of spatial dispersion. We focus on how seed predation may modify seed deposition patterns and affect the abundance and dispersion of adult trees in a tropical forest in India. Using plots across a range of seed densities, we examined whether seed predation levels by terrestrial rodents varied across six large-seeded, bird-dispersed tree species. Since inter-specific variation in density-dependent seed mortality may have downstream effects on recruitment and adult tree stages, we determined recruitment patterns close to and away from parent trees, along with adult tree abundance and dispersion patterns. Four species (Canarium resiniferum, Dysoxylum binectariferum, Horsfieldia kingii, and Prunus ceylanica) showed high predation levels (78.5-98.7%) and increased mortality with increasing seed density, while two species, Chisocheton cumingianus and Polyalthia simiarum, showed significantly lower seed predation levels and weak density-dependent mortality. The latter two species also had the highest recruitment near parent trees, with most abundant and aggregated adults. The four species that had high seed mortality had low recruitment under parent trees, were rare, and had more spaced adult tree dispersion. Biotic dispersal may be vital for species that suffer density-dependent mortality factors under parent trees. In tropical forests where large vertebrate seed dispersers but not seed predators are hunted, differences in seed vulnerability to rodent seed predation and density-dependent mortality can affect forest structure and composition.
Resumo:
The Reeb graph of a scalar function tracks the evolution of the topology of its level sets. This paper describes a fast algorithm to compute the Reeb graph of a piecewise-linear (PL) function defined over manifolds and non-manifolds. The key idea in the proposed approach is to maximally leverage the efficient contour tree algorithm to compute the Reeb graph. The algorithm proceeds by dividing the input into a set of subvolumes that have loop-free Reeb graphs using the join tree of the scalar function and computes the Reeb graph by combining the contour trees of all the subvolumes. Since the key ingredient of this method is a series of union-find operations, the algorithm is fast in practice. Experimental results demonstrate that it outperforms current generic algorithms by a factor of up to two orders of magnitude, and has a performance on par with algorithms that are catered to restricted classes of input. The algorithm also extends to handle large data that do not fit in memory.
Resumo:
We introduce and study a class of non-stationary semi-Markov decision processes on a finite horizon. By constructing an equivalent Markov decision process, we establish the existence of a piecewise open loop relaxed control which is optimal for the finite horizon problem.
Resumo:
Due to the inherent feedback in a decision feedback equalizer (DFE) the minimum mean square error (MMSE) or Wiener solution is not known exactly. The main difficulty in such analysis is due to the propagation of the decision errors, which occur because of the feedback. Thus in literature, these errors are neglected while designing and/or analyzing the DFEs. Then a closed form expression is obtained for Wiener solution and we refer this as ideal DFE (IDFE). DFE has also been designed using an iterative and computationally efficient alternative called least mean square (LMS) algorithm. However, again due to the feedback involved, the analysis of an LMS-DFE is not known so far. In this paper we theoretically analyze a DFE taking into account the decision errors. We study its performance at steady state. We then study an LMS-DFE and show the proximity of LMS-DFE attractors to that of the optimal DFE Wiener filter (obtained after considering the decision errors) at high signal to noise ratios (SNR). Further, via simulations we demonstrate that, even at moderate SNRs, an LMS-DFE is close to the MSE optimal DFE. Finally, we compare the LMS DFE attractors with IDFE via simulations. We show that an LMS equalizer outperforms the IDFE. In fact, the performance improvement is very significant even at high SNRs (up to 33%), where an IDFE is believed to be closer to the optimal one. Towards the end, we briefly discuss the tracking properties of the LMS-DFE.
Resumo:
We present a novel multi-timescale Q-learning algorithm for average cost control in a Markov decision process subject to multiple inequality constraints. We formulate a relaxed version of this problem through the Lagrange multiplier method. Our algorithm is different from Q-learning in that it updates two parameters - a Q-value parameter and a policy parameter. The Q-value parameter is updated on a slower time scale as compared to the policy parameter. Whereas Q-learning with function approximation can diverge in some cases, our algorithm is seen to be convergent as a result of the aforementioned timescale separation. We show the results of experiments on a problem of constrained routing in a multistage queueing network. Our algorithm is seen to exhibit good performance and the various inequality constraints are seen to be satisfied upon convergence of the algorithm.
Resumo:
Neutral and niche theories give contrasting explanations for the maintenance of tropical tree species diversity. Both have some empirical support, but methods to disentangle their effects have not yet been developed. We applied a statistical measure of spatial structure to data from 14 large tropical forest plots to test a prediction of niche theory that is incompatible with neutral theory: that species in heterogeneous environments should separate out in space according to their niche preferences. We chose plots across a range of topographic heterogeneity, and tested whether pairwise spatial associations among species were more variable in more heterogeneous sites. We found strong support for this prediction, based on a strong positive relationship between variance in the spatial structure of species pairs and topographic heterogeneity across sites. We interpret this pattern as evidence of pervasive niche differentiation, which increases in importance with increasing environmental heterogeneity.
Resumo:
Let where be a set of points in d-dimensional space with a given metric rho. For a point let r (p) be the distance of p with respect to rho from its nearest neighbor in Let B(p,r (p) ) be the open ball with respect to rho centered at p and having the radius r (p) . We define the sphere-of-influence graph (SIG) of as the intersection graph of the family of sets Given a graph G, a set of points in d-dimensional space with the metric rho is called a d-dimensional SIG-representation of G, if G is isomorphic to the SIG of It is known that the absence of isolated vertices is a necessary and sufficient condition for a graph to have a SIG-representation under the L (a)-metric in some space of finite dimension. The SIG-dimension under the L (a)-metric of a graph G without isolated vertices is defined to be the minimum positive integer d such that G has a d-dimensional SIG-representation under the L (a)-metric. It is denoted by SIG (a)(G). We study the SIG-dimension of trees under the L (a)-metric and almost completely answer an open problem posed by Michael and Quint (Discrete Appl Math 127:447-460, 2003). Let T be a tree with at least two vertices. For each let leaf-degree(v) denote the number of neighbors of v that are leaves. We define the maximum leaf-degree as leaf-degree(x). Let leaf-degree{(v) = alpha}. If |S| = 1, we define beta(T) = alpha(T) - 1. Otherwise define beta(T) = alpha(T). We show that for a tree where beta = beta (T), provided beta is not of the form 2 (k) - 1, for some positive integer k a parts per thousand yen 1. If beta = 2 (k) - 1, then We show that both values are possible.