87 resultados para choice modelling
Resumo:
The present article deals with the development of a finite element modelling approach for the prediction of residual velocities of hard core ogival-nose projectiles following normal impact on mild steel target plates causing perforation. The impact velocities for the cases analysed are in the range 818–866.3 m/s. Assessment of finite element modelling and analysis includes a comprehensive mesh convergence study using shell elements for representing target plates and solid elements for jacketed projectiles with a copper sheath and a rigid core. Dynamic analyses were carried out with the explicit contact-impact LS-DYNA 970 solver. It has been shown that proper choice of element size and strain rate-based material modelling of target plate are crucial for obtaining test-based residual velocity.The present modelling procedure also leads to realistic representation of target plate failure and projectile sheath erosion during perforation, and confirms earlier observations that thermal effects are not significant for impact problems within the ordnance range. To the best of our knowledge, any aspect of projectile failure or degradation obtained in simulation has not been reported earlier in the literature. The validated simulation approach was applied to compute the ballistic limits and to study the effects of plate thickness and projectile diameter on residual velocity, and trends consistent with experimental data for similar situations were obtained.
Resumo:
Modelling of city traffic involves capturing of all the dynamics that exist in real-time traffic. Probabilistic models and queuing theory have been used for mathematical representation of the traffic system. This paper proposes the concept of modelling the traffic system using bond graphs wherein traffic flow is based on energy conservation. The proposed modelling approach uses switched junctions to model complex traffic networks. This paper presents the modelling, simulation and experimental validation aspects.
Resumo:
Model building and molecular mechanics studies have been carried out to examine the potential structures for d(GGC/GCC)5 and d(CAG/CTG)5 that might relate to their biological function and association with triplet repeat expansion diseases. Model building studies suggested that hairpin and quadruplex structures could be formed with these repeat sequences. Molecular mechanics studies have demonstrated that the hairpin and hairpin dimmer structures of triplet repeat sequences formed by looping out of the two strands are as favourable as the corresponding B-DNA type hetero duplex structures. Further, at high salt condition, Greek key type quadruplex structures are energetically comparable with hairpin dimer and B-DNA type duplex structures. All tetrads in the quadruplex structures are well stacked and provide favourable stacking energy values. Interestingly, in the energy minimized hairpin dimer and Greek key type quadruplex structures, all the bases even in the non-G tetrads are cyclically hydrogen bonded, even though the A, C and T-tetrads were not hydrogen bonded in the starting structures.
Resumo:
Certain saccharides, including trehalose, sucrose and glucose, stabilize lipid bilayers against dehydration. It has been suggested that these saccharides replace waters of hydration as the system is dried, thereby maintaining the headgroups at their hydrated spacing. The lipid acyl chains consequently have sufficient free volume to remain in the liquid crystallines state, and the processes that disrupt membrane integrity are inhibited. Initial molecular graphic investigations of a model trehalose/DMPC system supported this idea (Chandrasekhar, I. and Gaber, B.P. (1988) J. Biomol. Stereodyn, 5, 1163–1171). We have extended these studies to glucose and sucrose. A set of AMBER potential parameters has been established that reproduce simple saccharide conformations, including the anomeric effect. Extensive energy minimizations have been conducted on all three systems. The saccharide-lipid interaction energies become less stable in the order trehalose
Resumo:
The kinetics of oxidation of aqueous acidic ferrous sulphate by Thiobacillus ferrooxidans has been studied in a batch reactor. The contribution of cell wall envelopes to the oxidation rate has been shown to be negligible. A model which accounts for the oxidation of Fe2 +, death of bacteria due to Fe3 + poisoning, existence of an optimal pH and precipitation of Fe3 + has been proposed. The model is able to predict the concentration of Fe2 + and pH quite satisfactorily. The predictions of Fe3 + are not so accurate because of simplifying assumptions made about its precipitation.
Resumo:
An implicit sub-grid scale model for large eddy simulation is presented by utilising the concept of a relaxation system for one dimensional Burgers' equation in a novel way. The Burgers' equation is solved for three different unsteady flow situations by varying the ratio of relaxation parameter (epsilon) to time step. The coarse mesh results obtained with a relaxation scheme are compared with the filtered DNS solution of the same problem on a fine mesh using a fourth-order CWENO discretisation in space and third-order TVD Runge-Kutta discretisation in time. The numerical solutions obtained through the relaxation system have the same order of accuracy in space and time and they closely match with the filtered DNS solutions.
Resumo:
Different modes of binding of pyrimidine monophosphates 2'-UMP, 3'-UMP, 2'-CMP and 3'-CMP to ribonuclease (RNase) A are studied by energy minimization in torsion angle and subsequently in Cartesian coordinate space. The results are analysed in the light of primary binding sites. The hydrogen bonding pattern brings out roles for amino acids such as Asn44 and Ser123 apart from the well known active site residues viz., His12,Lys41,Thr45 and His119. Amino acid segments 43-45 and 119-121 seem to be guiding the ligand binding by forming a pocket. Many of the active site charged residues display considerable movement upon nucleotide binding.
Resumo:
In this paper, we introduce an analytical technique based on queueing networks and Petri nets for making a performance analysis of dataflow computations when executed on the Manchester machine. This technique is also applicable for the analysis of parallel computations on multiprocessors. We characterize the parallelism in dataflow computations through a four-parameter characterization, namely, the minimum parallelism, the maximum parallelism, the average parallelism and the variance in parallelism. We observe through detailed investigation of our analytical models that the average parallelism is a good characterization of the dataflow computations only as long as the variance in parallelism is small. However, significant difference in performance measures will result when the variance in parallelism is comparable to or higher than the average parallelism.
Resumo:
This paper reviews integrated economic and ecological models that address impacts and adaptation to climate change in the forest sector. Early economic model studies considered forests as one out of many possible impacts of climate change, while ecological model studies tended to limit the economic impacts to fixed price-assumptions. More recent studies include broader representations of both systems, but there are still few studies which can be regarded fully integrated. Full integration of ecological and economic models is needed to address forest management under climate change appropriately. The conclusion so far is that there are vast uncertainties about how climate change affects forests. This is partly due to the limited knowledge about the global implications of the social and economical adaptation to the effects of climate change on forests.
Resumo:
Among various MEMS sensors, a rate gyroscope is one of the most complex sensors from the design point of view. The gyro normally consists of a proof mass suspended by an elaborate assembly of beams that allow the system to vibrate in two transverse modes. The structure is normally analysed and designed using commercial FEM packages such as ANSYS or MEMS specific commercial tools such as Coventor or Intellisuite. In either case, the complexity in analysis rises manyfolds when one considers the etch hole topography and the associated fluid flow calculation for damping. In most cases, the FEM analysis becomes prohibitive and one resorts to equivalent electrical circuit simulations using tools like SABER in Coventor. Here, we present a simplified lumped parameter model of the tuning fork gyro and show how easily it can be implemented using a generic tool like SIMULINK. The results obtained are compared with those obtained from more elaborate and intense simulations in Coventor. The comparison shows that lumped parameter SIMULINK model gives equally good results with fractional effort in modelling and computation. Next, the performance of a symmetric and decoupled vibratory gyroscope structure is also evaluated using this approach and a few modifications are made in this design to enhance the sensitivity of the device.
Resumo:
In the past two decades RNase A has been the focus of diverse investigations in order to understand the nature of substrate binding and to know the mechanism of enzyme action. Although this system is reasonably well characterized from the view point of some of the binding sites, the details of interactions in the second base binding (B2) site is insufficient. Further, the nature of ligand-protein interaction is elucidated generally by studies on RNase A-substrate analog complexes (mainly with the help of X-ray crystallography). Hence, the details of interactions at atomic level arising due to substrates are inferred indirectly. In the present paper, the dinucleotide substrate UpA is fitted into the active site of RNase A Several possible substrate conformations are investigated and the binding modes have been selected based on Contact Criteria. Thus identified RNase A-UpA complexes are energy minimized in coordinate space and are analysed in terms of conformations, energetics and interactions. The best possible ligand conformations for binding to RNase A are identified by experimentally known interactions and by the energetics. Upon binding of UpA to RNase A the changes associated,with protein back bone, Side chains in general and at the binding sites in particular are described. Further, the detailed interactions between UpA and RNase A are characterized in terms of hydrogen bonds and energetics. An extensive study has helped in interpreting the diverse results obtained from a number of experiments and also in evaluating the extent of changes the protein and the substrate undergo in order to maximize their interactions.
Resumo:
Ultrasonication of aqueous KI solution is known to yield I2 due to reaction of iodide ions with hydroxyl radicals, which in turn are generated due to cavitation. Based on this conceptual framework, a model has been developed to predict the rate of iodine formation for KI solutions of various concentrations under different gas atmospheres. The model follows the growth and collapse of a gas—vapour cavity using the Rayleigh—Plesset bubble dynamics equation. The bubble is assumed to behave isothermally during its growth phase and a part of the collapse phase. Thereafter it is assumed to collapse adiabatically, yielding high temperatures and pressures. Thermodynamic equilibrium is assumed in the bubble at the end of collapse phase. The contents of the bubble are assumed to mix with the liquid, and the reactor contents are assumed to be well stirred. The model has been verified by conducting experiments with KI solutions of different concentrations and using different gas atmospheres. The model not only explains these results but also the existence of a maximum when Ar---O2 mixtures of different compositions are employed.
Resumo:
Ultrasonication of aqueous KI solution is known to yield I2 due to reaction of iodide ions with hydroxyl radicals, which in turn are generated due to cavitation. Based on this conceptual framework, a model has been developed to predict the rate of iodine formation for KI solutions of various concentrations under different gas atmospheres. The model follows the growth and collapse of a gas-vapour cavity using the Rayleigh-Plesset bubble dynamics equation. The bubble is assumed to behave isothermally during its growth phase and a part of the collapse phase. Thereafter it is assumed to collapse adiabatically, yielding high temperatures and pressures. Thermodynamic equilibrium is assumed in the bubble at the end of collapse phase. The contents of the bubble are assumed to mix with the liquid, and the reactor contents are assumed to be well stirred. The model has been verified by conducting experiments with KI solutions of different concentrations and using different gas atmospheres. The model not only explains these results but also the existence of a maximum when Ar-O2 mixtures of different compositions are employed.
Resumo:
Estimates of interfacial friction angle (delta) are necessary for the design of retaining structures and deep foundations, Recommendations in the literature regarding delta values are often contradictory and are therefore not easy to apply in geotechnical design, A critical examination of past studies in terms of data generation techniques used and conclusions drawn indicates that two distinctly different test procedures/techniques have been evolved. The interfacial situation in practice can also be categorized into two broad types, These two types of interface problems in geotechnical engineering are (a) the structure is placed on the free surface of prepared fill (type A situation) and (b) the fill is placed against the material surface which functions as a confined boundary (type B situation), The friction angle delta depends on the surface roughness of the construction material, But in the type A situation, it is independent of density and its limiting maximum value (delta(lim)) is the critical state friction angle phi(cv). In the type B situation, it is dependent on density of the fill and its limiting maximum value is the peak angle of internal friction phi(p) of the fill.