136 resultados para chloride content
Resumo:
Ethylα-bromovinylacetate (VII) was condensed with the sodio derivative of ethyl piperonoylacetate (VIII) to give diethylα-vinyl-α′-piperonoylsuccinate (IX). The latter on reduction with lithium aluminium hydride furnished the triol (X), which underwent smooth cyclisation with 1% ethanolic hydrogen chloride to 2-(3′, -methylenedioxyphenyl)-hydroxymethyl-4-vinyltetrahydrofuran (XIa). The structure of XIa was established by Oppenauer oxidation to an aldehyde. Ozonolysis of XIa afforded samin (I).
Resumo:
Reactions of fourteen nucleophiles with the pseudo-acid chloride of o-benzoylbenzoic acid in two solvents have been studied. The nucleophiles that react primarily at the tetrahedral carbon atom to give pseudo derivatives, are weaker than those that react at the carbonyl carbon atom causing opening of the lactone ring. An explanation for this phenomenon is advanced.
Resumo:
The (overall trans) addition of hydrogen chloride to cyclohex-1- enecarbonitrile in anhydrous alcoholic media proceeds to give cis-2-chlorocyclohexanecarboxylate (together with some cis-2- chlorocyclohexanecarboxamide): no corresponding products with the trans-configuration are detectable. In anhydrous ether the addition proceeds to give a single isomer, presumably cis-, of 2-chlorocyclohexanecarbonitrile, indicating that the configuration of the products may not be equilibrium-controlled in alcoholic media. An examination of the steric factors indicates that the transition state for protonation of the presumed intermediate, 2-chlorocyclohexylidenemethylideneimine, leading to cis-product is favoured if interaction between the lateral π-orbital of the C-N double bond and the lone-pairs on the chlorine atom at the 2-position is large. Consideration of interactions in the transition states meets Zimmerman's criticism that invoking A1, 3 interaction existing in ground states to explain product configuration takes insufficient account of the Curtin-Hammett principle.
Resumo:
Pulicat Lake sediments are often severely polluted with the toxic heavy metal mercury. Several mercury-resistant strains of Bacillus species were isolated from the sediments and all the isolates exhibited broad spectrum resistance (resistance to both organic and inorganic mercuric compounds). Plasmid curing assay showed that all the isolated Bacillus strains carry chromosomally borne mercury resistance. Polymerase chain reaction and southern hybridization analyses using merA and merB3 gene primers/probes showed that five of the isolated Bacillus strains carry sequences similar to known merA and merB3 genes. Results of multiple sequence alignment revealed 99% similarity with merA and merB3 of TnMERI1 (class II transposons). Other mercury resistant Bacillus species lacking homology to these genes were not able to volatilize mercuric chloride, indicating the presence of other modes of resistance to mercuric compounds.
Resumo:
The basic method of JIc calculation using a single specimen is discussed. Dokouipil's approach for evaluating the JIc value is extended further and the effect of prestrain on rolled mild steel with significant inclusions is studied using this modified approach. Although this method does not give an accurate value of JIc, it is quite effective for a comparative study. While the fracture toughness of annealed and 7% prestrained materials are about the same, the fracture toughness of 3% prestrained material is significantly lower.
Resumo:
The crystal structures of two ternary metal nucleotide complexes of cobalt, [Co(en)2(H2O)2]-[Co(5?-IMP)2(H2O)4]Cl2·4H2O (1) and [Co(en)2(H2O)2][Co(5?-GMP)2(H2O)4]Cl2·4H2O (2), have been analysed by X-ray diffraction (en = ethylenediamine, 5?-IMP = inosine 5?-monophosphate, and 5?-GMP = guanosine 5?-monophosphate). Both complexes crystallize in the orthorhombic space group C2221 with a= 8.725(1), b= 25.891(5), c= 21.212(5)Å, Z= 4 for (1) and a= 8.733(2), b= 26.169(4), c= 21.288(4)Å, Z= 4 for (2). The structure of (1) was solved by the heavy-atom method, while that of (2) was deduced from (1). The structures were refined to R values of 0.09 and 0.10 for 1 546 and 1 572 reflections for (1) and (2) respectively. The two structures are isomorphous. A novel feature is that the chelate ligand en and the nucleotide are not co-ordinated to the same metal ion. One of the metal ions lying on the two-fold a axis is octahedrally co-ordinated by two chelating en molecules and two water oxygens, while the other on the two-fold b axis is octahedrally co-ordinated by two N(7) atoms of symmetry-related nucleotides in a cis position and four water oxygens. The conformations of the nucleotides are C(2?)-endo, anti, and gauche�gauche. In both (1) and (2) the charge-neutralising chloride ions are disordered in the vacant space between the molecules. These structures bear similarities to the mode of nucleotide co-ordination to PtII complexes of 6-oxopurine nucleotides, which are the proposed models for intrastrand cross-linking in DNA by a metal complex.
Resumo:
A unified gauge theory of massless and massive spin-2 fields is of considerable current interest. The Poincaré gauge theories with quadratic Lagrangian are linearized, and the conditions on the parameters are found which will lead to viable linear theories with massive gauge particles. As well as the 2+ massless gravitons coming from the translational gauge potential, the rotational gauge potentials, in the linearized limit, give rise to 2+ and 2− particles of equal mass, as well as a massive pseudoscalar.
Resumo:
Pulicat Lake sediments are often severely polluted with the toxic heavy metal mercury. Several mercury-resistant strains of Bacillus species were isolated from the sediments and all the isolates exhibited broad spectrum resistance (resistance to both organic and inorganic mercuric compounds). Plasmid curing assay showed that all the isolated Bacillus strains carry chromosomally borne mercury resistance. Polymerase chain reaction and southern hybridization analyses using merA and merB3 gene primers/probes showed that five of the isolated Bacillus strains carry sequences similar to known merA and merB3 genes. Results of multiple sequence alignment revealed 99% similarity with merA and merB3 of TnMERI1 (class II transposons). Other mercury resistant Bacillus species lacking homology to these genes were not able to volatilize mercuric chloride, indicating the presence of other modes of resistance to mercuric compounds.
Resumo:
In the crystal structure of the title salt, C7H7Cl2N2O2+ center dot Cl-, the chloride anions participate in extensive hydrogen bonding with the aminium cations and indirectly link the molecules through multiple N+-H center dot center dot center dot Cl- salt bridges. There are two independent molecules in the asymmetric unit, related by a pseudo-inversion center. The direct intermolecular coupling is established by C-H center dot center dot center dot O, C-H center dot center dot center dot Cl and C-Cl center dot center dot center dot Cl- interactions. A rare three-center (donor bifurcated) C-H center dot center dot center dot (O,O) hydrogen bond is observed between the methylene and nitro groups, with a side-on intramolecular component of closed-ring type and a head-on intermolecular component.
Resumo:
Given a Hamiltonian system, one can represent it using a symplectic map. This symplectic map is specified by a set of homogeneous polynomials which are uniquely determined by the Hamiltonian. In this paper, we construct an invariant norm in the space of homogeneous polynomials of a given degree. This norm is a function of parameters characterizing the original Hamiltonian system. Such a norm has several potential applications. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The conformational stability of Plasmodium falciparum triosephosphate isomerase (TIMWT) enzyme has been investigated in urea and guanidinium chloride (GdmCl) solutions using circular dichroism, fluorescence, and size-exclusion chromatography. The dimeric enzyme is remarkably stable in urea solutions. It retains considerable secondary, tertiary, and quaternary structure even in 8 M urea. In contrast, the unfolding transition is complete by 2.4 M GdmCl. Although the secondary as well as the tertiary interactions melt before the perturbation of the quaternary structure, these studies imply that the dissociation of the dimer into monomers ultimately leads to the collapse of the structure, suggesting that the interfacial interactions play a major role in determining multimeric protein stability. The Cm(urea)/Cm(GdmCl) ratio (where Cm is the concentration of the denaturant required at the transition midpoint) is unusually high for triosephosphate isomerase as compared to other monomeric and dimeric proteins. A disulfide cross-linked mutant protein (Y74C) engineered to form two disulfide cross-links across the interface (13-74‘) and (13‘-74) is dramatically destablized in urea. The unfolding transition is complete by 6 M urea and involves a novel mechanism of dimer dissociation through intramolecular thiol−disulfide exchange.