503 resultados para carbon fibres


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon-supported Pt-TiO2 (Pt-TiO2/C) catalysts with varying at. wt ratios of Pt to Ti, namely, 1:1, 2:1, and 3:1, are prepared by the sol-gel method. The electrocatalytic activity of the catalysts toward oxygen reduction reaction (ORR), both in the presence and absence of methanol, is evaluated for application in direct methanol fuel cells (DMFCs). The optimum at. wt ratio of Pt to Ti in Pt-TiO2/C is established by fuel cell polarization, linear sweep voltammetry, and cyclic voltammetry studies. Pt-TiO2/C heattreated at 750 degrees C with Pt and Ti in an at. wt ratio of 2:1 shows enhanced methanol tolerance, while maintaining high catalytic activity toward ORR. The DMFC with a Pt-TiO2/C cathode catalyst exhibits an enhanced peak power density of 180 mW/cm(2) in contrast to the 80 mW/cm(2) achieved from the DMFC with carbon-supported Pt catalyst while operating under identical conditions. Complementary data on the influence of TiO2 on the crystallinity of Pt, surface morphology, and particle size, surface oxidation states of individual constituents, and bulk and surface compositions are also obtained by powder X-ray diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, energy dispersive analysis by X-ray, and inductively coupled plasm optical emission spectrometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrical and optical response of a field-effect device comprising a network of semiconductor-enriched single-wall carbon nanotubes, gated with sodium chloride solution is investigated. Field-effect is demonstrated in a device that uses facile fabrication techniques along with a small-ion as the gate electrolyte-and this is accomplished as a result of the semiconductor enhancement of the tubes. The optical transparency and electrical resistance of the device are modulated with gate voltage. A time-response study of the modulation of optical transparency and electrical resistance upon application of gate voltage suggests the percolative charge transport in the network. Also the ac response in the network is investigated as a function of frequency and temperature down to 5 K. An empirical relation between onset frequency and temperature is determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Morphology and electrochemical performance of mixed crystallographic phase titania nanotubes for prospective application as anode in rechargeable lithium ion batteries are discussed. Hydrothermally grown nanotubes of titania (TiO2) and carbon-titania (C-TiO2) comprise a mixture of both anatase and TiO2 (B) crystallographic phases. The first cycle capacity (at Current rate = 10 mAg(-1)) for bare TiO2 nanotubes was 355 mAhg(-1) (approximately 1.06 Li), which is higher than both the theoretical capacity (335 mAhg(-1)) and the reported values for pure anatase and TiO2 (B) nanotubes. Higher capacity is attributed to it combination of the presence of mixed crystallographic phases of titania and trivial size effects. The surface area of bare TiO2 nanotubes was very high at 340 m(2) g(-1). C-TiO2 nanotubes showed a slightly lower first-cycle specific capacity of 307 mAhg(-1), but the irreversible capacity loss in the first cycle decreased by half compared to bare TiO2 nanotubes. The C-TiO2 nanotubes also showed a better rate capability, that is, higher capacities compared to bare TiO2 nanotubes in the Current range 0.1-2 Ag-1. Enhanced rate capability in the case of C-TiO2 is attributed to the efficient percolation of electrons as well its to the decrease in the anatase phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single pellet experiments have been carried out in a nitrogen atmosphere to study the reduction of hematite by graphite in the temperature range 925 to 1060°C. The effect of variables such as c/Fe2O3 molar ratio, pellet size, and so forth, has been investigated. Gas analysis data show a continuous decrease in CO2/CO ratio during reduction, the values being far away from Fe/FeO equilibrium for wustite reduction by CO. The activation energies associated with different degrees of reduction appear to be widely different suggesting a possible changeover in reaction mechanism during the progress of reduction. X-ray diffraction studies confirm the stepwise nature of hematite reduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composites of Polystyrene-multi wall carbon nanotubes (PS-MWNTs) were prepared with loading up to 7 wt% of MWNTs by simple solvent mixing and drying technique. MWNTs with high aspect ratio similar to 4000 were used to make the polymer composites. A very high degree of dispersion of MWNTs was achieved by ultrasonication technique. As a result of high dispersion and high aspect ratio of the MWNTs electrical percolation was observed at rather low weight fraction similar to 0.0021. Characterization of the as prepared PS-MWNTs composites was done by Electron microscopy (EM), X-ray diffraction technique (XRD) and Thermogravimetery analysis (TGA).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various carbon nanostructures (CNs) have been prepared by a simple deposition technique based on the pyrolysis of a new carbon source material tetrahydrofuran (THF) mixed with ferrocene using quartz tube reactor in the temperature range 700-1100 degrees C. A detailed study of how the synthesis parameter such as growth temperature affects the morphology of the carbon nanostructures is presented. The obtained CNs are investigated by scanning electron microscope (SEM), X-ray diffraction (XRD), electron dispersive scattering (EDS)thermogravimetry analysis (TGA), Raman and transmission electron microscope (TEM). It is observed that at 700 degrees C. normal CNTs are formed. Iron filled multi-walled carbon nanotubes (MWCNTs) and carbon nanoribbons (CNRs) are formed at 950 degrees C. Magnetic characterization of iron filled MWCNTs and CNRs studied at 300 K by superconducting quantum interference device (SQUID) reveals that these nanostructures have an enhanced coercivity (Hc = 1049 Oe) higher than that of bulk Fe. The large shape anisotropy of MWCNTs, which act on the encapsulated material (Fe), is attributed for the contribution of the higher coercivity. Coiled carbon nanotubes (CCNTs) were obtained as main products in large quantities at temperature 1100 degrees C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been found experimentally that the results related to the collective field emission performance of carbon nanotube (CNT) arrays show variability. The emission performance depends on the electronic structure of CNTs (especially their tips). Due to limitations in the synthesis process, production of highly pure and defect free CNTs is very difficult. The presence of defects and impurities affects the electronic structure of CNTs. Therefore, it is essential to analyze the effect of defects on the electronic structure, and hence, the field emission current. In this paper, we develop a modeling approach for evaluating the effect of defects and impurities on the overall field emission performance of a CNT array. We employ a concept of effective stiffness degradation for segments of CNTs, which is due to structural defects. Then, we incorporate the vacancy defects and charge impurity effects in our Green's function based approach. Simulation results indicate decrease in average current due to the presence of such defects and impurities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iron encapsulated carbon nanoparticle polyvinyl chloride composite films have been prepared by solvent mixing and drying method. The films were characterized by scanning electron microscope (SEM) and high resolution transmission electron microscope (HRTEM). A 5 nm thin graphitic carbon coating is observed on cubic Fe nanoparticles. The microwave absorption studies by wave guide technique in the Ka band range showed highest electromagnetic interference shielding efficiency of 18dB on a 300 micron thick film. The shielding efficiency depends on weight % of the filler in the composite. The data obtained for different films indicate that these lightweight materials are good candidates for potential electromagnetic interference shielding applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the thermoelectric power under classically large magnetic field (TPM) in ultrathin films (UFs), quantum wires (QWs) of non-linear optical materials on the basis of a newly formulated electron dispersion law considering the anisotropies of the effective electron masses, the spin-orbit splitting constants and the presence of the crystal field splitting within the framework of k.p formalism. The results of quantum confined III-V compounds form the special cases of our generalized analysis. The TPM has also been studied for quantum confined II-VI, stressed materials, bismuth and carbon nanotubes (CNs) on the basis of respective dispersion relations. It is found taking quantum confined CdGeAs2, InAs, InSb, CdS, stressed n-InSb and Bi that the TPM increases with increasing film thickness and decreasing electron statistics exhibiting quantized nature for all types of quantum confinement. The TPM in CNs exhibits oscillatory dependence with increasing carrier concentration and the signature of the entirely different types of quantum systems are evident from the plots. Besides, under certain special conditions, all the results for all the materials gets simplified to the well-known expression of the TPM for non-degenerate materials having parabolic energy bands, leading to the compatibility test. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solubilities of two fatty acids, namely hexadecanoic acid (palmitic acid) and octadecanoic acid (stearic acid) in supercritical carbon dioxide (SCCO2), were determined at T = (328 and 338) K from 12.8 MPa to 22.6 MPa. Three models, namely a thermodynamic model based on the Peng-Robinson equation of state with Kwak and Mansoori mixing rules, a model based on dilute solution theory proposed by Mendez-Santiago and Teja and a new reformulated Chrastil equation model, were used to correlate the solubilities. In all the models, the correlation constants are temperature independent. All the models successfully correlated the experimental results for the solubilities of hexadecanoic acid within 3%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper represents the effect of nonlocal scale parameter on the wave propagation in multi-walled carbon nanotubes (MWCNTs). Each wall of the MWCNT is modeled as first order shear deformation beams and the van der Waals interactions between the walls are modeled as distributed springs. The studies shows that the scale parameter introduces certain band gap region in both flexural and shear wave mode where no wave propagation occurs. This is manifested in the wavenumber plots as the region where the wavenumber tends to infinite (or group speed tends to zero). The frequency at which this phenomenon occurs is called the ``Escape frequency''. The analysis shows that, for a given N-walled carbon nanotube (CNT). the nonlocal scaling parameter has a significant effect on the shear wave modes of the N - 1 walls. The escape frequencies of the flexural and shear wave modes of the N-walls are inversely proportionl to the nonlocal scaling parameter. It is also shown that the cut-off frequencies are independent of the nonlocal scale parameter. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we discuss a new technique to image the surfaces of metallic substrates using field emission from a pointed array of carbon nanotubes (CNTs). We consider a pointed height distribution of the CNT array under a diode configuration with two side gates maintained at a negative potential to obtain a highly intense beam of electrons localized at the center of the array. The CNT array on a metallic substrate is considered as the cathode and the test substrate as the anode. Scanning the test Substrate with the cathode reveals that the field emission current is highly sensitive to the surface features with nanometer resolution. Surface features of semi-circular, triangular and rectangular geometries (projections and grooves) are considered for simulation. This surface scanning/mapping technique can be applied for surface roughness measurements with nanoscale accuracy. micro/nano damage detection, high precision displacement sensors, vibrometers and accelerometers. among other applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Separation of metallic from semiconducting single-walled carbon nanotubes has been a major challenge for some time and some previous efforts have resulted in partial success. We have accomplished the separation effectively by employing fluorous chemistry wherein the diazonium salt of 4-heptadecafluorooc tylaniline selectively reacts with the metallic nanotubes present in the mixture of nanotubes. The resulting fluoroderivative was extracted in perfluorohexane leaving the semiconducting nanotubes in the aqueous layer. The products have been characterized by both Raman and electronic absorption spectroscopy. The method avoids the cumbersome centrifugation step required by some other procedures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composite of anatase titania (TiO2) nanospheres and carbon grown and self-assembled into micron-sized mesoporous spheres via a solvothermal synthesis route are discussed here in the context of rechargeable lithium-ion battery. The morphology and carbon content and hence the electrochemical performance are observed to be significantly influenced by the synthesis parameters. Synthesis conditions resulting in a mesoporous arrangement of an optimized amount carbon and TiO2 exhibited the best lithium battery performance. The first discharge cycle capacity of carbon-titania mesoporous spheres (solvothermal reaction at 150 degrees C at 6 h, calcination at 500 degrees C under air, BET surface area 80 m(2)g(-1)) was 334 mAhg(-1) (approximately 1 Li) at current rate of 0.066 Ag-1. High storage capacity and good cyclability is attributed to the nanostructuring of TiO2 (mesoporosity) as well as due to formation of a percolation network of carbon around the TiO2 nanoparticles. The micron-sized mesoporous spheres of carbon-titania composite nanoparticles also show good rate cyclability in the range (0.066-6.67) Ag-1.