59 resultados para calculations of enolates


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ground-state properties of the spin-(1/2 Heisenberg antiferromagnet on a square lattice are studied by using a simple variational wave function that interpolates continuously between the Néel state and short-range resonating-valence-bond states. Exact calculations of the variational energy for small systems show that the state with the lowest energy has long-range antiferromagnetic order. The staggered magnetization in this state is approximately 70% of its maximum possible value. The variational estimate of the ground-state energy is substantially lower than the value obtained for the nearest-neighbor resonating-valence-bond wave function.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Photoelectron spectroscopy (PES) provides valuable information on the ionization energies of atoms and molecules. The ionization energy (IE) is given by the relation.hv = IE + T where hv is t h e energy of the radiation and T i s the kinetic energy of the electron. The IEs are directly related to the orbital energies (Koopmans' theorem). By employing UV radiation (HeI. 21.2 eV. or HeII. 40.8 eV). extensive data on the ionization of valence electrons in organic molecules have been obtained in recent years. These studies of UV photoelectron spectroscopy. originated by Turner, have provided a direct probe into the energy levels of organic molecules. Molecular orbital calculations of various degrees of sophistication are generally employed to make assignments of the PES bands. Analysis of the vibrational structure of PES bands has not only provided structural information on the molecular ions, but has also been of value in band assignments. Dewar and co-workers [1, 2) presented summaries of available PES data on organic molecules in 1969 and 1970. Turner et al. [3] published a handbook of Hel spectra of organic molecules in 1970. Since then, a few books [4-7] discussing the principles and applications of UV photoelectron spectroscopy have appeared of which special mention should be made of the recent article by Heilbronner and Maier [7]. There has, however, been no comprehensive review of the vast amount of data on the UV-PES of organic molecules published in the literature since 1970.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using a continuum Dirac theory, we study the density and spin response of zigzag edge-terminated graphene ribbons subjected to edge potentials and Zeeman fields. Our analytical calculations of the density and spin responses of the closed system (fixed particle number) to the static edge fields, show a highly nonlinear Weber-Fechner type behavior where the response depends logarithmically on the edge potential. The dependence of the response on the size of the system (e.g., width of a nanoribbon) is also uncovered. Zigzag edge graphene nanoribbons, therefore, provide a realization of response of organs such as the eye and ear that obey Weber-Fechner law. We validate our analytical results with tight-binding calculations. These results are crucial in understanding important effects of electron-electron interactions in graphene nanoribbons such as edge magnetism, etc., and also suggest possibilities for device applications of graphene nanoribbons.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have examined a number of possible ways by which tetramethyleneethane (TME) can be a ground state triplet, as claimed by experimental studies, in violation of Ovchinnikov’s theorem for alternant hydrocarbons of equal bond lengths. Model exact π calculations of the low-lying states of TME, 3,4-dimethylenefuran and 3,4-dimethylenepyrrole were carried out using a diagrammatic valence bond approach. The calculations failed to yield a triplet ground state even after (a) tuning of electron correlation, (b) breaking alternancy symmetry, and (c) allowing for geometric distortions. In contrast to earlier studies of fine structure constants in other conjugated systems, the computedD andE values of all the low-lying triplet states of TME for various geometries are at least an order of magnitude different from the experimentally reported values. Incorporation of σ-π mixing by means of UHF MNDO calculations is found to favour a singlet ground state even further. A reinterpretation of the experimental results of TME is therefore suggested to resolve the conflict.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Several of the most interesting quantum effects can or could be observed in nanoscopic systems. For example, the effect of strong correlations between electrons and of quantum interference can be measured in transport experiments through quantum dots, wires, individual molecules and rings formed by large molecules or arrays of quantum dots. In addition, quantum coherence and entanglement can be clearly observed in quantum corrals. In this paper we present calculations of transport properties through Aharonov-Bohm strongly correlated rings where the characteristic phenomenon of charge-spin separation is clearly observed. Additionally quantum interference effects show up in transport through pi-conjugated annulene molecules producing important effects on the conductance for different source-drain configurations, leading to the possibility of an interesting switching effect. Finally, elliptic quantum corrals offer an ideal system to study quantum entanglement due to their focalizing properties. Because of an enhanced interaction between impurities localized at the foci, these systems also show interesting quantum dynamical behaviour and offer a challenging scenario for quantum information experiments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Temperature- and density-dependent vibrational relaxation data for the v6 asymmetric stretch of W(CO)6 in supercritical fluoroform (trifluoromethane, CHF3) are presented and compared to a recent theory of solute vibrational relaxation. The theory, which uses thermodynamic and hydrodynamic conditions of the solvent as input parameters, shows very good agreement in reproducing the temperature- and density-dependent trends of the experimental data with a minimum of adjustable parameters. Once a small number of parameters are fixed by fitting the functional form of the density dependence, there are no adjustable parameters in the calculations of the temperature dependence. © 2001 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We determine the nature of coupled phonons and magnetic excitations in AlFeO3 using inelastic light scattering from 5 to 315 K covering a spectral range from 100 to 2200 cm(-1) and complementary first-principles density functional theory-based calculations. A strong spin-phonon coupling and magnetic ordering-induced phonon renormalization are evident in (1) anomalous temperature dependence of many modes with frequencies below 850 cm(-1), particularly near the magnetic transition temperature T-c approximate to 250 K, and (2) distinct changes in band positions of high-frequency Raman bands between 1100 and 1800 cm(-1); in particular, a broad mode near 1250 cm(-1) appears only below T-c, attributed to the two-magnon Raman scattering. We also observe weak anomalies in the mode frequencies similar to 100 K due to a magnetically driven ferroelectric phase transition. Understanding of these experimental observations has been possible on the basis of first-principles calculations of the phonons' spectrum and their coupling with spins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two heterometallic coordination polymers (CPs) have been prepared using (NiL)-L-II](2)Co-II (where H2L = N,N'-bis(salicylidene)-1,3-propanediamine) as nodes and dicyanamido spacers by varying the solvent for synthesis. Structural characterizations revealed that methanol assisted the formation of a two-dimensional (4,4) connected rhombic grid network of (NiL)(2)Co(NCNCN)2](infinity) (1a) whereas relatively less polar acetonitrile afforded a different superstructure {(NiL)(2)Co(NCNCN)(2)]center dot CH3CN}(infinity) (1b) with a two-dimensional (4,4) connected square grid network. The presence of acetonitrile molecules in the structure of 1b seems to change the spatial orientation of the terminal metalloligands NiL] from pseudo-eclipsed in 1a to staggered-like in 1b around the central Co(II). These structural changes in the nodes together with the conformationally flexible dicyanamido spacers, which are cis coordinated to the Co(II) in both trinuclear units, led to the differences in the final 2D network. Variable-temperature magnetic susceptibility measurements revealed that this supramolecular isomerism led to a drastic transition from spin-frustrated antiferromagnetism for 1a to a dominant ferromagnetic behaviour for 1b. The geometrical differences in Ni2Co coordination clusters (CCs) which are scalene triangular in 1a but nearly linear in 1b, are held responsible for the changes of the magnetic properties. The DFT calculations of exchange interactions between metal centres provide a clear evidence of the role played by the fundamental geometrical factors on the nature and magnitude of the magnetic coupling in these pseudo-polymorphic CPs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The universal binding energy relation (UBER), derived earlier to describe the cohesion between two rigid atomic planes, does not accurately capture the cohesive properties when the cleaved surfaces are allowed to relax. We suggest a modified functional form of UBER that is analytical and at the same time accurately models the properties of surfaces relaxed during cleavage. We demonstrate the generality as well as the validity of this modified UBER through first-principles density functional theory calculations of cleavage in a number of crystal systems. Our results show that the total energies of all the relaxed surfaces lie on a single (universal) energy surface, that is given by the proposed functional form which contains an additional length-scale associated with structural relaxation. This functional form could be used in modelling the cohesive zones in crack growth simulation studies. We find that the cohesive law (stress-displacement relation) differs significantly in the case where cracked surfaces are allowed to relax, with lower peak stresses occurring at higher displacements.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A controlled laboratory experiment was carried out on forty Indian male college students for evaluating the effect of indoor thermal environment on occupants' response and thermal comfort. During experiment, indoor temperature varied from 21 degrees C to 33 degrees C, and the variables like relative humidity, airflow, air temperature and radiant temperature were recorded along with subject's physiological parameters (skin (T-sk) and oral temperature (T-c)) and subjective thermal sensation responses (TSV). From T-sk and T-c, body temperature (T-b) was evaluated. Subjective Thermal Sensation Vote (TSV) was recorded using ASHRAE 7-point scale. In PMV model, Fanger's T-sk equation was used to accommodate adaptive response. Step-wise regression analysis result showed T-b was better predictor of TSV than T-sk and T-c. Regional skin temperature response, suppressed sweating without dipping, lower sweating threshold temperature and higher cutaneous threshold for sweating were observed as thermal adaptive responses. These adaptive responses cannot be considered in PMV model. To incorporate subjective adaptive response, mean skin temperature (T-sk) is considered in dry heat loss calculation. Along with these, PMV-model and other two methodologies are adopted to calculate PMV values and results are compared. However, recent literature is limited to measure the sweat rate in Indians and consideration of constant Ersw in PMV model needs to be corrected. Using measured T-sk in PMV model (Method(1)), thermal comfort zone corresponding to 0.5 <= PMV <= 0.5 was evaluated as (22.46-25.41) degrees C with neutral temperature of 23.91 degrees C, similarly while using TSV response, wider comfort zone was estimated as (23.25-26.32) degrees C with neutral temperature at 24.83 degrees C, which was further increased to with TSV-PPDnew, relation. It was observed that PMV-model overestimated the actual thermal response. Interestingly, these subjects were found to be less sensitive to hot but more sensitive to cold. A new TSV-PPD relation (PPDnew) was obtained from the population distribution of TSV response with an asymmetric distribution of hot-cold thermal sensation response from Indians. The calculations of human thermal stress according to steady state energy balance models used on PMV model seem to be inadequate to evaluate human thermal sensation of Indians. Relevance to industry: The purpose of this paper is to estimate thermal comfort zone and optimum temperature for Indians. It also highlights that PMV model seems to be inadequate to evaluate subjective thermal perception in Indians. These results can be used in feedback control of HVAC systems in residential and industrial buildings. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Engineering the position of the lowest triplet state (T-1) relative to the first excited singlet state (S-1) is of great importance in improving the efficiencies of organic light emitting diodes and organic photovoltaic cells. We have carried out model exact calculations of substituted polyene chains to understand the factors that affect the energy gap between S-1 and T-1. The factors studied are backbone dimerisation, different donor-acceptor substitutions, and twisted geometry. The largest system studied is an 18 carbon polyene which spans a Hilbert space of about 991 x 10(6). We show that for reverse intersystem crossing process, the best system involves substituting all carbon sites on one half of the polyene with donors and the other half with acceptors. (C) 2014 AIP Publishing LLC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Motivated by the discrepancies noted recently between the theoretical calculations of the electromagnetic omega pi form factor and certain experimental data, we investigate this form factor using analyticity and unitarity in a framework known as the method of unitarity bounds. We use a QCD correlator computed on the spacelike axis by operator product expansion and perturbative QCD as input, and exploit unitarity and the positivity of its spectral function, including the two-pion contribution that can be reliably calculated using high-precision data on the pion form factor. From this information, we derive upper and lower bounds on the modulus of the omega pi form factor in the elastic region. The results provide a significant check on those obtained with standard dispersion relations, confirming the existence of a disagreement with experimental data in the region around 0.6 GeV.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a framework for obtaining reliable solid-state charge and optical excitations and spectra from optimally tuned range-separated hybrid density functional theory. The approach, which is fully couched within the formal framework of generalized Kohn-Sham theory, allows for the accurate prediction of exciton binding energies. We demonstrate our approach through first principles calculations of one- and two-particle excitations in pentacene, a molecular semiconducting crystal, where our work is in excellent agreement with experiments and prior computations. We further show that with one adjustable parameter, set to produce the known band gap, this method accurately predicts band structures and optical spectra of silicon and lithium fluoride, prototypical covalent and ionic solids. Our findings indicate that for a broad range of extended bulk systems, this method may provide a computationally inexpensive alternative to many-body perturbation theory, opening the door to studies of materials of increasing size and complexity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The solvent plays a decisive role in the photochemistry and photophysics of aromatic ketones. Xanthone (XT) is one such aromatic ketone and its triplet-triplet (T-T) absorption spectra show intriguing solvatochromic behavior. Also, the reactivity of XT towards H-atom abstraction shows an unprecedented decrease in protic solvents relative to aprotic solvents. Therefore, a comprehensive solvatochromic analysis of the triplet-triplet absorption spectra of XT was carried out in conjunction with time dependent density functional theory using the ad hoc explicit solvent model approach. A detailed solvatochromic analysis of the T-T absorption bands of XT suggests that the hydrogen bonding interactions are different in the corresponding triplet excited states. Furthermore, the contributions of non-specific and hydrogen bonding interactions towards differential solvation of the triplet states in protic solvents were found to be of equal magnitude. The frontier molecular orbital and electron density difference analysis of the T-1 and T-2 states of XT indicates that the charge redistribution in these states leads to intermolecular hydrogen bond strengthening and weakening, respectively, relative to the S-0 state. This is further supported by the vertical excitation energy calculations of the XT-methanol supra-molecular complex. The intermolecular hydrogen bonding potential energy curves obtained for this complex in the S-0, T-1, and T-2 states support the model. In summary, we propose that the different hydrogen bonding mechanisms exhibited by the two lowest triplet excited states of XT result in a decreasing role of the n pi* triplet state, and are thus responsible for its reduced reactivity towards H-atom abstraction in protic solvents. (C) 2016 AIP Publishing LLC.