139 resultados para acidic biomakers
Resumo:
Graft copolymerization of poly(aniline) (PANI) onto poly(propylene) (PP) fibre was carried out in aqueous acidic medium under nitrogen atmosphere by using peroxomonosulphate (PMS) as a lone initiator. The non-conducting fibre was now made into a conducting one through the chemical grafting of PANI units onto the PP fibre backbone. The content of PANI in the backbone was found to vary while varying the [ANI], [PMS] and amount of PP fibre. Various graft parameters were evaluated. The chemical grafting of PANI onto PP fibre was confirmed by conductivity measurements.
Resumo:
R-(+)-Pulegone was administered orally to rats and the urinary metabolites were investigated. Six metabolites were isolated and purified using column and thin layer chromatographic techniques. Metabolites were identified by i.r., n.m.r. and mass spectral analyses.The neutral metabolites isolated from urine of rats treated with pulegone (I) were: pulegol (II), 2-hydroxy-2(1'-hydroxy-1'-methylethyl)-5-methylcyclohexanone (III), 3,6-dimethyl-7a-hydroxy-5,6,7,7a-tetrahydro-2(4H)-benzofuranone (V) and menthofuran (VII). Metabolites II and III were also excreted in conjugated form.Acidic metabolites isolated from urine of rats treated with pulegone (I) were: 5-methyl-2(1'-methyl-1'-carboxyethylidene)cyclohexanone (IV) and 5-methyl-5-hydroxy-2(1'hydroxy-'-carboxyethyl)cyclohexanone (VI).
Resumo:
Chemically modified microporous materials can be prepared as robust catalysts suitable for application in vapor phase processes such as Friedel-Crafts alkylation. In the present paper we have investigated the use of rare earth metal (Ce3+, La3+, RE3+, and Sm3+) exchanged Na-Y zeolites as catalysts for the alkylation of benzene with long chain linear 1-olefin; 1-dodecene. Thermodesorption studies of 2,6-dimethylpyridine adsorbed catalysts (in the temperature range 573 to 873 K) show that the rare earth zeolites are highly Bronsted acidic in nature. A perfect correlation between catalyst selectivity towards the desired product (2-phenyldodecane) and Bronsted acid sites amount has been observed. (c) 2006 Springer Science + Business Media, Inc.
Resumo:
A commercial acrylic fiber with 92% (w/w) acrylonitrile content was partially hydrolyzed converting a fraction of the nitrile (-CN) groups to carboxylic acid (-COOH) groups, to coat the fiber with polyethylenimine (PEI) resin, which was then crosslinked with glutaraldehyde and further quaternized with ethyl chloroacetate to produce a novel strong-base anionic exchanger in the form of fiber. Designated as PAN(QPEI.XG)(Cl-), the fibrous sorbent was compared with a commercial bead-form resin Amberlite IRA-458(Cl-) in respect of sorption capacity, selectivity, and kinetics for removal of silver thiosulfate complexes from aqueous solutions. Though the saturation level of [Ag(S2O3)(2)](3-) on PAN(QPEI.XG)(Cl-) is considerably less than that on IRA-458(Cl-), the gel-coated fibrous sorbent exhibits, as compared to the bead-form sorbent, a significantly higher sorption selectivity for the silver thiosulfate complex in the presence of excess of other anions Such as S2O32-, SO42-, and Cl-, and a remarkably faster rate of both sorption and stripping. The initial uptake of the sorbate by the fibrous sorbent is nearly instantaneous, reaching up to similar to 80% of the saturation capacity within 10 s, as compared to only similar to 12% on the bead-form sorbent. The high initial rate of uptake fits a shell-core kinetic model for sorption on fiber of cylindrical geometry. With 4M HCl, the stripping of the sorbed silver complex from the fibrous sorbent is clean and nearly instantaneous, while, in contrast, a much slower rate of stripping on the bead-form sorbent leads to its fouling due to a slow decomposition of the silver thiosulfate complex in the acidic medium.
Resumo:
The angiospermous plant parasite Cuscuta derives reduced carbon and nitrogen compounds primarily from its host. Free amino acids along Cuscuta vines in three zones, viz., 0 to 5 cm, 5 to 15 cm, and 15 to 30 cm, which in a broad sense represent the region of cell division, cell elongation and differentiation and vascular tissue differentiation respectively, were quantitatively estimated. The free amino acid content was the highest in the 0 to 5 cm region and progressively decreased along the posterior regions of the vine. The haustorial region showed the lowest content of free amino acids. In general, the free amino acid content in samples collected at 7 p.m. was found to be higher than that in the samples collected at 7 a.m. Three basic amino acids, histidine, the uncommon amino acid γ-hydroxyarginine, and arginine constituted more than 50% of the total free amino acids in all the zones studied except the haustorial region. Aspartic acid and glutamic acid constituted the major portion in the acidic and neutral fraction of amino acids. Glutamine, asparagine, threonine, and serine were eluted together and occurred in substantial amounts. γ-Hydroxyarginine constituted the largest fraction in the cut end exudate of Cuscuta and presumably appeared to be the major form of transport amino acid. γ-Hydroxyarginine was also a major constituent of the basic amino acids in Cuscuta vines parasitizing host plants from widely separated families, suggesting that this amino acid is a biosynthetic product of the parasite rather than that of the hosts. Also, U-14C arginine was converted to γ-hydroxyarginine by cut Cuscuta vines, suggesting that γ-hydroxyarginine is synthesized de novo from arginine by Cuscuta.
Resumo:
Recent experimental investigations of phase equilibria and thermodynamic properties of the systems M-Pb-O, where M = Ca, Sr or Ba, indicate a regular increase in thermodynamic stability of ternary oxides, MPbO3 and M2PbO4, with increasing basicity of the oxide of the alkaline-earth metal. Number of stable interoxide compounds at 1100 K in the systems M-Pb-O (M = Mg, Ca, Sr, Ba) increases in unit increments from Mg to Ba. In this paper, experimentally determined standard Gibbs energies of formation of M2PbO4 (M = Ca, Sr, Ba) and MPbO3 (M = Sr, Ba) from their component binary monoxides and oxygen gas are combined with an estimated value for CaPbO3 to delineate systematic trends in thermodynamic stability of the ternary oxides. The trends are interpreted using concepts of tolerance factor and acid-base interactions. All the ternary oxides in these systems contain lead in the tetravalent state. The small Pb4+ ions polarize the surrounding oxygen ions and cause the formation of oxyanions which are acidic in character. Hence, the higher oxidation state of lead is stabilized in the presence of basic oxides of alkaline-earth group. A schematic subsolidus temperature-composition phase diagram is presented for the system BaO-PbO-O-2 to illustrate the change in oxidation states in binary and ternary oxides with temperature.
Resumo:
A series of molecular complexes, both co-crystals and salts, of a triazole drug-alprazolam-with carboxylic acids, boric acid, boronic acids, and phenols have been analyzed with respect to heterosynthons present in the crystal structures. In all cases, the triazole ring behaves as an efficient hydrogen bond acceptor with the acidic coformers. The hydrogen bond patterns exhibited with aromatic carboxylic acids were found to depend on the nature and position of the substituents. Being a strong acid, 2,6-dihydroxybenzoic acid forms a salt with alprazolam. With aliphatic dicarboxylic acids alprazolam forms hydrates and the water molecules play a central role in synthon formation and crystal packing. The triazole ring makes two distinct heterosynthons in the molecular complex with boric acid. Boronic acids and phenols form consistent hydrogen bond patterns, and these are seemingly independent of the substitutional effects. Boronic acids form noncentrosymmetric cyclic synthons, while phenols form O-H center dot center dot center dot N hydrogen bonds with the triazole ring. (C) 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:3743-3753, 2010.
Resumo:
1. 1. The binding parameters of prealbumin-2 with retinol-binding protein and thyroxine (T4) revealed the existence of distinct and multiple sites for both retinol-binding protein and T4. 2. 2. From the analysis of binding parameters of retinol-binding protein with prealbumin-2 it is clear that under steady-state conditions about 99% of the holo-retinol-binding protein remains bound to prealbumin-2. 3. 3. Equilibrium dialysis studies on binding properties of thyroid hormones with prealbumin-2 revealed that it has a single high affinity site and three low affinity sites. 4. 4. The occurrence of three carrier proteins for thyroid hormones, thyroxine-binding globulin, prealbumin-2 and albumin has been demonstrated. However, the chicken thyroxine-binding globulin differs from human thyroxine-binding globulin by being relatively less acidic and occuring at a two-fold lower concentration. But the thyroid hormone binding parameters are comparable. 5. 5. Highly sensitive methods were developed for determination of T4 binding capacities of the various proteins and plasma level of total T4 by fractionation of carrier proteins and further quantitatively employing in electrophoresis and equilibrium dialysis. 6. 6. The thyroxine-binding proteins were found to be two types, one (viz., thyroxine-binding globulin) of great affinity but of low binding capacity, which mainly acts as reservoir of T4, and another (viz.,prealbumin-2) of low affinity but of high binding capacity, which can participate predominantly in the control of the free T4 pool.
Resumo:
Ribosomal phosphoproteins of Microsporum canis labelled in vivo were characterised by two-dimensional and SDS polyacrylamide gel electrophoresis. A small subunit protein, S6, was the only phosphoprotein identified in 40S and 80S in basic-acidic two-dimensional gels. Three different forms of phosphorylated S6 were also observed in 40S subunit. On SDS gels five phosphoproteins were identified in 80S; of these three were present in 40S and two in 60S. S6 was the only basic phosphoprotein, while the other four were acidic.
Resumo:
The interaction of the protein atoms with the surrounding water oxygen atoms has been computed for 392 protein chains from 369 protein structures belonging to 90% non-homologous high resolution (<= 1.5 angstrom) protein Structures with a crystallographic R-factor <= 20%. The percentage composition of the polar atoms is found to be 36.3%. An average of 82.55% of water oxygen atoms are found to be in the primary hydration shell and 15.12% in the secondary hydration shell. The average Percentage of interactions of water oxygen atoms with the polar atoms of the main chain and side chain are 54% and 46%. respectively. The interaction of the acidic residues, aspartate and glutamate, with the water oxygen atoms is more when compared to that of the other residues.
Resumo:
The binding of 1-anilino-8-naphthalene-sulfonic acid to globular proteins at acidic pH has been investigated by electrospray ionization mass spectrometry (ESIMS). Mass spectra of apomyoglobin recorded in the pH range 2−7 establish that maximal ANS binding is observed at pH 4.0. As many as seven distinct species may be observed in the gas phase which correspond to protein molecules containing one to six molecules of bound ANS. At neutral pH only a single molecule of ANS is bound. In the case of cytochrome c, maximal binding is observed at pH 4.0, with five molecules being bound. Binding is suppressed at neutral pH. In both cases ESIMS demonstrates maximal ANS binding at pH values where the proteins have been reported to exist in molten globule states. ANS binding is not observed for lysozyme, which has a tightly folded structure over the entire pH range. Reduction of disulfide bonds in lysozyme leads to the detection of ANS-bound species at neutral pH. Binding is suppressed at low pH due to complete unfolding of the reduced protein. The results suggest that ESIMS may provide a convenient method of probing the stoichiometry and distribution of dye complexes with molten protein globules
Resumo:
Microporous polybenzimidazole (PBI) of 250–500 μm bead size has been epoxidized and subsequently reacted with l-cysteine in the presence of a phase-transfer catalyst at room temperature to obtain a sorbent having anchored l-cysteine, EPBI(Cyst). The sorption of Cu(II), Ni(II), Co(II), and Zn(II) in mildly acidic and ammoniacal solutions has been measured under comparable conditions on EPBI(Cyst) and Dowex 50W-X8(H+) resins. While the latter shows no appreciable difference in sorption of the four metals in acidic and ammoniacal media and has 40–60 % selectivity for copper(II) over the other three, EPBI(Cyst) shows a threefold increase in copper sorption and more than 90% copper selectivity over the other metals in ammoniacal media, compared to mildly acidic media. The copper binding constant and saturation capacity of EPBI(Cyst) in ammoniacal media decrease only slowly beyond pH 11.6 with the result that the resin shows significant sorption of Cu(II) even in strongly ammoniacal solutions. The sorbed copper is stripped with HCl relatively easily. The copper sorption kinetics on EPBI(Cyst) is unusually fast in ammoniacal media with more than 90 % of equilibrium sorption being attained in one minute.
Resumo:
The surfactant-assisted seed-mediated growth method was used for the formation of gold nanorods (GNRs) directly on gold (Au) and indium tin oxide (ITO) surfaces. Citrate-stabilized similar to 2.6 nm spherical gold nanoparticles (AuNPs) were first self-assembled on ITO or Au surfaces modified with (3-mercaptopropyl)-trimethoxysilane (MPTS) sol-gel film and then immersed in a cationic surfactant growth solution to form GNRs. The growth of GNRs on the MPTS sol gel film modified ITO surface was monitored by UV-visible spectroscopy. The ITO surface with the attached spherical AuNPs shows a surface plasmon resonance band at 550 nm. The intensity of this absorption band increases while increasing the immersion time of the AuNP-modified ITO surface into the growth solution, and after 5 h, an additional shoulder band around 680 nm was observed. The intensity of this shoulder band increases, and it was shifted to longer wavelength as the immersion time of the AuNP-modified ITO surface into the growth solution increases. After 20 h, a predominant wave at 720 nm was observed along with a band at 550 nm. Further immersion of the modified ITO surface into the growth solution did not change the absorption characteristics. The bands observed at 550 and 720 nm were characteristics of GNRs, corresponding to transverse and longitudinal waves, respectively. The AFM images showed the presence of GNRs on the surface of the MPTS sol gel modified ITO surface with a typical length of similar to 100-120 nm and a width of similar to 20-22 nm in addition to a few spherical AuNPs, indicating that seeded spherical AuNPs were not completely involved in the GNRs' formation. Finally, the electrocatalytic activity of the surface-grown GNRs on the MPTS sol gel film modified Au electrode toward the oxidation of ascorbic acid (AA) was studied. Unlike a polycrystalline Au electrode, the surface-grown GNR-modified electrode shows two well-defined voltammetric peaks for AA at 0.01 and 0.35 V in alkaline, neutral, and acidic pHs. The cause for the observed two oxidation peaks for AA was due to the presence of both nanorods and spherical nanoparticles on the electrode surface. The presence of spherical AuNPs on the MPTS sol gel film oxidized AA at more positive potential, whereas the GNRs oxidized AA at less positive potential. The observed 340 mV less positive potential shift in the oxidation of AA suggested that GNRs are better electrocatalysts for the oxidation of AA than the spherical AuNPs.
Resumo:
An extracellular xylanase was purified to homogeneity from the culture filtrate of the thermophilic fungus, Humicola lanuginosa (Griffon and Maublanc) Bunce and its properties were studied. A fourfold purification and a yield of 8% were achieved. The molecular-weight of the protein was found to be 22,500 based on electrophoretic mobility and 29,000 by gel filtration behavior. The protein is rich in acidic amino acids, glycine and tyrosine, and poor in sulfur-containing amino acids. The kinetic properties of the enzyme are similar to those of other fungal xylanases. The enzyme shows high affinity toward larchwood xylan (Km = 0.91 mg/ml) and hydrolyzes only xylan. The enzyme becomes inactivated when stored for more than 2 months at −20 °C in the dry state. Such an inactivation has not been reported so far for any xylanase. Using chromatographic techniques, one species of protein differing from the native protein in charge but enzymatically active was isolated in low yields. However, a large molecular-weight species of the protein devoid of enzyme activity was isolated in substantial quantities and further characterized. Based on ultracentrifugation and gel electrophoretic studies, it was concluded that this species may be an aggregate of the native protein and that such an aggregation might be taking place on storage in the dry state at −20 °C, leading to loss in activity.
Resumo:
The kinetics of oxidation of aqueous acidic ferrous sulphate by Thiobacillus ferrooxidans has been studied in a batch reactor. The contribution of cell wall envelopes to the oxidation rate has been shown to be negligible. A model which accounts for the oxidation of Fe2 +, death of bacteria due to Fe3 + poisoning, existence of an optimal pH and precipitation of Fe3 + has been proposed. The model is able to predict the concentration of Fe2 + and pH quite satisfactorily. The predictions of Fe3 + are not so accurate because of simplifying assumptions made about its precipitation.