67 resultados para Zeta potential measurements


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Owing to its large surface area and rapid cellular uptake, graphene oxide (GO) is emerging as an attractive candidate material for delivery of drugs and genes. The inherent sp(2) pi-pi interaction of GO helps to carry drugs and single stranded RNA (ssRNA) but there is no such interaction with double stranded DNA (dsDNA). In this work, a polyamidoamine (PAMAM) dendron was conjugated with nano GO (nGO) through ``click'' chemistry to improve the DNA complexation capability of GO as well as its transfection efficiency. The DNA complexation capability of GO was significantly enhanced after dendronization of GO yielding spherical nanosized (250-350 nm) particles of the dendronized GO (DGO)/pDNA complex with a positive zeta potential. The transfection efficiency of GO dramatically increased after conjugation of the PAMAM dendron. Transfection efficiency of 51% in HeLa cells with cell viability of 80% was observed. The transfection efficiency was significantly higher than that of polyethyleneimine 25 kDa (27% efficiency) and also surpassed that of lipofectamine 2000 (47% efficiency). The uptake of the DGO/pDNA complex by the caveolae mediated endocytosis pathway may significantly contribute to the high transfection efficiency. Thus, dendronized GO is shown to be an efficient gene carrier with minimal toxicity and is a promising candidate for use as a nonviral carrier for gene therapy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The lack of an efficient and safe carrier is a major impediment in the field of gene therapy. Although gelatin (GT), a naturally derived polymer, is widely used in drug delivery applications, it is unable to bind DNA efficiently. In this study, a novel polycationic gene carrier was prepared by conjugation of low molecular weight polyethyleneimine (LPEI) with GT through 4-bromonaphthaleic anhydride as a coupling agent to avoid self crosslinking. Self-assembly of LPEI conjugated GT (GT-LPEI) with plasmid DNA (pDNA) yielded nanoparticles with high gene complexation ability to form similar to 250 nm cylindrical nanoparticles with a zeta potential of similar to 27 mV. GT-LPEI showed exceptionally high transfection efficiency (> 90%) in various mammalian cells including primary stem cells with minimal cytotoxicity. The transfection efficiency of GT-LPEI significantly surpassed that of many commercial reagents. The high gene transfection expression was confirmed in vivo. Thus, GT-LPEI is shown to be a promising nonviral carrier for potential use in gene therapy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two antineoplastic agents, Imatinib (IM) and 5-Fluorouracil (FU) were conjugated by hydrolysable linkers through an amide bond and entrapped in polymeric Human Serum Albumin (HSA) nanoparticles. The presence of dual drugs in a common carrier has the advantage of reaching the site of action simultaneously and acting at different phases of the cell cycle to arrest the growth of cancer cells before they develop chemoresistance. The study has demonstrated an enhanced anticancer activity of the conjugate, and conjugate loaded stealth HSA nanoparticles (NPs) in comparison to the free drug in A-549 human lung carcinoma cell line and Zebra fish embryos (Danio rerio). Hydrolysability of the conjugate has also been demonstrated with complete hydrolysis being observed after 12 h. In vivo pharmacodynamics study in terms of tumor volume and pharmacokinetics in mice for conjugate (IM-SC-FU) and conjugate loaded nanoparticles showed significant anti-cancer activity. The other parameters evaluated were particle size (86nm), Poly Dispersive Index (PDI) (0.209), zeta potential (-49mV), drug entrapment efficiency (96.73%) and drug loading efficiency (89%). Being in stealth mode gives the potential for the NPs to evade Reticulo-Endothelial system (RES), achieve passive targeting by Enhanced Permeation Retention (EPR) effect with controlled release of the therapeutic agent. As the conjugate cleaves into individual drugs in the tumor environment, this promises better suppression of cancer chemoresistance by delivering dual drugs with different modes of action at the same site, thereby synergistically inhibiting the growth of cancerous tissue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Compton profile data are used to investigate the ground state wavefunction of graphite. The results of two new $\gamma$-ray measurements are reported and compared with the results of earlier $\gamma$-ray and electron scattering measurements. A tight-binding calculation has been carried out and the results of earlier calculations based on a molecular model and a pseudo-potential wavefunction are considered. The analysis, in terms of the reciprocal form factor, shows that none of the calculations gives an adequate description of the data in the basal plane although the pseudo-potential calculation describes the anisotropy in the plane reasonably well. In the basal plane the zero-crossing theorem appears to be violated and this problem must be resolved before more accurate models can be derived. In the c-axis direction the molecular model and the tight binding calculation give better agreement with the experimental data than does the pseudopotential calculation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thermodynamic properties of Na2CO3-Na2SO4 solid solution with hexagonal structure have been measured in the temperature range of 873 to 1073 K, using a composite-gradient solid electrolyte. The cell used can be represented as The composite-gradient solid electrolyte consisted of pure Na2CO3 at one extremity and the solid solution under study at the other, with variation in composition across the electrolyte. A CO2 + O2 + Ar gas mixture was used to fix the chemical potential of sodium at each electrode. The Nernstian response of the cell to changes in partial pressures of CO2 and O2 at the electrodes has been demonstrated. The activity of Na2CO3 in the solid solution was measured by two techniques. In the first method, the electromotive force (emf) of the cell was measured with the same CO2 + O2 + Ar mixture at both electrodes. The resultant emf is directly related to the activity of Na2CO3 at the solid solution electrode. By the second approach, the activity was calculated from the difference in compositions Of CO2 + O2 + Ar mixtures at the two electrodes required to produce a null emf. Both methods gave identical results. The second method is more suitable for gradient solid electrolytes that exhibit significant electronic conduction. The activity of Na2CO3 exhibits positive deviation from Raoult's law. The excess Gibbs' energy of mixing of the solid solution can be represented using a subregular solution model such as the following: DELTAG(E) = X(1 - X)[6500(+/-200)X + 3320(+/-80)(1 - X)J mol-1 where X is the mole fraction of Na2CO3. By combining this information with the phase diagram, mixing properties of the liquid phase are obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The basis set dependence of the topographical structure of the molecular electrostatic potential (MESP), as well as the effect of substituents on the MESP distribution, has been investigated with substituted benzenes as test cases. The molecules are studied at HF-SCF 3�21G and 6�31G** levels, with a further MESP topographical investigation at the 3�21G, double-zeta, 6�31G*, 6�31G**, double-zeta polarized and triple-zeta polarized levels. The MESP critical points for a 3�21G optimized/6�31G** basis are similar to the corresponding 6�31G** optimized/6�31G** ones. More generally, the qualitative features of the MESP topography computed at the polarized level are independent of the level at which optimization is carried out. For a proper representation of oxygen lone pairs, however, optimization using a polarized basis set is required. The nature of the substituent drastically changes the MESP distribution over the phenyl ring. The values and positions of MESP minima indicate the most active site for electrophilic attack. This point is strengthened by a study of disubstituted benzenes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have developed a technique for precise measurement of small magnetic fields using nonlinear magneto-optic rotation (NMOR). The technique relies on the resonant laser beam being chopped. During the on time, the atoms are optically pumped into an aligned ground state (Delta m=2 coherence). During the off time, they freely precess around the magnetic field at the Larmor frequency. If the on-off modulation frequency matches (twice) the Larmor precession frequency, the rotation is resonantly enhanced in every cycle, thereby making the process like a repeated Ramsey measurement of the Larmor frequency. We study chopped-NMOR in a paraffin-coated Cs vapor cell. The out-of-phase demodulated rotation shows a Lorentzian peak of linewidth 85 mu G, corresponding to a sensitivity of 0.15nG/root Hz. We discuss the potential of this technique for the measurement of an atomic electric-dipole moment. Copyright (C) EPLA, 2011

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solid oxide galvanic cells using CaO-ZrO2 and CaO-ZrO2 in combination with YO1.5-ThO2 as electrolyte were used to determine the free energy of formation of hercynite from 750–1600°C. The formation reaction is 2Fe(s,1) + O2(g) + Al2O3(α) = 2FeO.Al2O3(s)for which ΔG° = − 139,790 + 32.83T (±300) cals. (750–1536°C) ΔG° = − 146,390 + 36.48T (±300) cals. (1536–1700°C)These measurements can be used to resolve the discrepancies that exist in published thermochemical data, and provide an accurate oxygen potential standard for calibrating and assessing the performance of oxygen probes under steelmaking conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

From electromotive force (emf) measurements using solid oxide galvanic cells incorporating ZrOz-CaO and ThOz-YO~.s electrolytes, the chemical potentials of oxygen over the systems Fe + FeCrzO 4 + Cr20 ~ and Fe + FeV204 + V203 were calculated. The values may be represented by the equations: 2Fe(s, I) + Oz(g) + 2Cr2Oa(s) -- 2FeCr204 (s)Akto2 = - 151,400 + 34.7T (• cal= -633,400 + 145.5T(• J (750 to 1536~ A~tO2 = -158,000 + 38.4T(• cal= -661,000 + 160.5T(*1250) J (1536 to 1700~2Fe (s, I) + O2 (g) + 2V203 (s) -- 2FeV204 (s) A/~Oz = - 138,000 + 29.8T(+300) cal= - 577,500 + 124.7T (• J (750 to 1536~A/IO2 = -144,600 + 33.45T(-300) cal = -605,100 + 140.0T(~-1250) J (1536 to 1700~At the oxygen potentials corresponding to Fe + FeCrzO a + Cr203 equilibria, the electronic contribution to the conductivity of ZrO2-CaO electrolyte was found to affect the measured emf. Application of a small 60 cycle A.C. voltage with an amplitude of 50 mv across the cell terminals reduced the time required to attain equilibrium at temperatures between 750 to 9500C by approximately a factor of two. The second law entropy of iron chromite obtained in this study is in good agreement with that calculated from thermal data. The entropies of formation of these spinel phases from the component oxides can be correlated to cation distribution and crystal field theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On lowering the oxygen potential, the tetragonal phase of YBa2Cu3O7−δ was found to decompose into a mixture of Y2BaCuO5, BaCuO2 and BaCu2O2 in the temperature range 773–1173 K. The 123 compound was contained in a closed crucible of yttria-stabilized zirconia in the temperature range 773–1073 K. Oxygen was removed in small increments by coulometric titration through the solid electrolyte crucible at constant temperature. The oxygen potential was calculated from the open circuit e.m.f. of the solid state cell after successive titrations. Pure oxygen at a pressure of 1.01 × 105 Pa was used as the reference electrode. The decomposition of the 123 compound manifested as a plateau in oxygen potential. The decomposition products were identified by X-ray diffraction. At temperatures above 1073 K there was some evidence of reaction between the 123 compound, solid electrolyte crucible and platinum. For measurements above 1073 K, the 123 compound was contained in a magnesia crucible placed in a closed outer silica tube. The oxygen potential in the gas phase above the 123 compound was controlled and measured by a solid state cell based on yttria-stabilized zirconia which served both as a pump and sensor. The lower oxygen potential limit for the stability of the 123 compound is given by View the MathML source The oxygen non-stoichiometric parameter δ for the 123 compound has a value of 0.98 (View the MathML source) at dissociation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New compos~tiong radient solid electrolytes are developed which have application in high temperature solid state galvanic sensors and provide a new tool for thermodynamic measurements. The electrolyte consists oi a solid solution between two ionic conductors with a common mobile ion and spatial variation in composition of otber coxup nents. Incorporation of the composite electrolyte in sensors permits the use oi dissimilar gas electrodes. It is demonsuated, both experimentall y and theoretically, that the composition gradient of the relativeiy immobile species does not give rise to a diffusion potential.The emi of a cell is determined by the activity of the mobile species at the two eiectrodes. The thermodynamic properties of solid solutions can be measured using the gradient solid electrolyte. The experimental stuay is based on model systems A?(COj)x(S04)l-x (A=Na,K),where S \.aria across the electrolyte. The functionally gradient solid electrolytes used for activity measurements consist of pure carbonate at one ena and the solid solution under stuav at the other. The identical vaiues of activity, obtained h m t hree different modes of operation of the ceil. indicate unit transport number for the ddi metal ion in the graciient electrolyte. Tlle activities in the solid solutions exhibit moderate positive deviations from Raoult 's law.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The standard Gibbs energies of formation of SrIrO3, Sr2IrO4 and Sr4IrO6 have been determined in the temperature range from 975 to 1400 K using solid-state cells with (Y2O3) ZrO2 as the electrolyte and pure oxygen gas at a pressure of 0.1 MPa as the reference electrode. For the design of appropriate working electrodes, phase relations in the ternary system Sr–Ir–O were investigated at 1350 K. The only stable oxide detected along the binary Ir–O was IrO2. Three ternary oxides, SrIrO3, Sr2IrO4 and Sr4IrO6, compositions of which fall on the join SrO–IrO2, were found to be stable. Each of the oxides coexisted with pure metal Ir. Therefore, three working electrodes were prepared consisting of mixtures of Ir+SrO+Sr4IrO6, Ir+Sr4IrO6+Sr2IrO4, and Ir+Sr2IrO4+SrIrO3. These mixtures unambiguously define unique oxygen chemical potentials under isothermal and isobaric conditions. Used for the measurements was a novel apparatus, in which a buffer electrode was introduced between reference and working electrodes to absorb the electrochemical flux of oxygen through the solid electrolyte. The buffer electrode prevented polarization of the measuring electrode and ensured accurate data. The standard Gibbs energies of formation of the compounds, obtained from the emf of the cells, can be represented by the following equations: View the MathML sourcem View the MathML source View the MathML source where Δf (ox)Go represents the standard Gibbs energy of formation of the ternary compound from its component binary oxides SrO and IrO2. Based on the thermodynamic information, chemical potential diagrams for the system Sr–Ir–O were developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An advanced design of the solid-state cell incorporating a buffer electrode has been developed for high temperature thermodynamic measurements. The function of the buffer electrode, placed between reference and working electrodes, was to absorb the electrochemical flux of the mobile species through the solid electrolyte caused by trace electronic conductivity. The buffer electrode prevented polarization of the measuring electrode and ensured accurate data. The application of the novel design and its advantages have been demonstrated by measuring the standard Gibbs energies of formation of ternary oxides of the system Sm–Pd–O. Yttria-stabilized zirconia was used as the solid electrolyte and pure oxygen gas at a pressure of 0.1 MPa as the reference electrode. For the design of appropriate working electrodes, phase relations in the ternary system Sm–Pd–O were investigated at 1273 K. The two ternary oxides, Sm4PdO7 and Sm2Pd2O5, compositions of which fall on the Sm2O3–PdO join, were found to coexist with pure metal Pd. The thermodynamic properties of the ternary oxides were measured using three-phase electrodes in the temperature range 950–1425 K. During electrochemical measurements a third ternary oxide, Sm2PdO4, was found to be stable at low temperature. The standard Gibbs energies of formation (Δf(ox)Go) of the compounds from their component binary oxides Sm2O3 and PdO, can be represented by the equations: Sm4PdO7: Δf(ox)Go (J mol−1)=−34,220+0.84T(K) (±280); Sm2PdO4: Δf(ox)Go (J mol−1)=−33,350+2.49T(K) (±230); Sm2Pd2O5: Δf(ox)Go (J mol−1)=−59,955+1.80T(K) (±320). Based on the thermodynamic information, three-dimensional P–T–C and chemical potential diagrams for the system Sm–Pd–O were developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new design for the solid-state cell incorporating a buffer electrode for high-temperature thermodynamic measurements is presented. The function of the buffer electrode, placed between the reference and working electrodes, is to absorb the electrochemical flux of the mobile species through the solid electrolyte caused by trace electronic conductivity. The buffer electrode prevents polarization of the measuring electrode and ensures accurate data. The application of this novel design and its advantages are demonstrated by measurement of the standard Gibbs energies of formation of Nd6Ir2O13 (low-temperature form) and Nd2Ir2O7 in the temperature range from 975 to 1450 K. Yttria-stabilized zirconia is used as the solid electrolyte and pure oxygen gas at a pressure of 0.1 MPa as the reference electrode. For the design of appropriate working electrodes, phase relations in the ternary system NdIrO were investigated at 1350 K. The two ternary oxides, Nd6Ir2O13 and Nd2Ir2O7, compositions of which fall on the join Nd2O3IrO2, were found to coexist with pure metal Ir. Therefore, two working electrodes were prepared consisting of mixtures of Ir+Nd2O3+Nd6Ir2O13 and Ir+Nd6Ir2O13+ Nd2Ir2O7. These mixtures unambiguously define unique oxygen chemical potentials under isothermal and isobaric conditions. The standard Gibbs energies of formation (ΔG°f (ox)) of the compounds from their component binary oxides Nd2O3 and IrO2, obtained from the emf of the cells, can be represented by the equations:View the MathML source View the MathML source Based on the thermodynamic information, chemical potential diagrams for the system NdIrO are developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cadmium selenide (CdSe) thin films have been successfully prepared by the electrodeposition technique on indium doped tin oxide (ITO) substrates with aqueous solutions of cadmium sulphate and selenium dioxide. The deposited films were characterized with X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive analysis by X-rays (EDAX), photoluminescence (PL), UV spectrometry and electrical resistivity measurements. XRD analysis shows that the films are polycrystalline in nature with hexagonal crystalline structure. The various parameters such as crystallite size, micro strain, dislocation density and texture coefficients were evaluated. SEM study shows that the total substrate surface is well covered with uniformly distributed spherical shaped grains. Photoluminescence spectra of films were recorded to understand the emission properties of the films. The presence of direct transition with band gap energy 1.75 eV is established from optical studies. The electrical resistivity of the thin films is found to be 10(6) Omega cm and the results are discussed. (c) 2011 Elsevier Ltd. All rights reserved.