131 resultados para YELLOW FEVER VIRUS
Resumo:
Digoxigenin (DIG)-labeled DNA probe was developed for a sensitive and rapid detection of the Tobacco streak virus (TSV) isolates in India by dot-blot and tissue print hybridization techniques. DIG-labeled DNA probe complementary to the coat protein (CP) region of TSV sunflower isolate was designed and used to detect the TSV presence at field levels. Dot-blot hybridization was used to check a large number of TSV isolates with a single probe. In addition, a sensitivity of the technique was examined with the different sample extraction methods. Another technique, the tissue blot hybridization offered a simple, reliable procedure and did not require a sample processing. Thus, both non-radioactively labeled probe techniques could facilitate the sample screening during TSV outbreaks and offer an advantage in quarantine services.
Resumo:
In vitro translation of belladonna mottle virus BDMV(I) genomic RNA in a rabbit reticulocyte lysate system produced proteins of Mr 210,000, 150,000 and 78,000 which form the non-structural proteins. The coat protein, on the other hand, was expressed from a subgenomic RNA which was found to be encapsidated in the empty capsids forming the top component viral particles. The implications of subgenomic RNA encapsidation in viral replication and assembly are discussed.
Resumo:
The 3' terminal 1255 nt sequence of Physalis mottle virus (PhMV) genomic RNA has been determined from a set of overlapping cDNA clones. The open reading frame (ORF) at the 3' terminus corresponds to the amino acid sequence of the coat protein (CP) determined earlier except for the absence of the dipeptide, Lys-Leu, at position 110-111. In addiition, the sequence upstream of the CP gene contains the message coding for 178 amino acid residues of the C-terminus of the putative replicase protein (RP). The sequence downstream of the CP gene contains an untranslated region whose terminal 80 nucleotides can be folded into a characteristic tRNA-like structure. A phylogenetic tree constructed after aligning separately the sequence of the CP, the replicase protein (RP) and the tRNA-like structure determined in this study with the corresponding sequences of other tymoviruses shows that PhMV wrongly named belladonna mottle virus [BDMV(I)] is a separate tymovirus and not another strain of BDMV(E) as originally envisaged. The phylogenetic tree in all the three cases is identical showing that any subset of genomic sequence of sufficient length can be used for establishing evolutionary relationships among tymoviruses.
Resumo:
A 0.9 kb double stranded cDNA of foot and mouth disease virus (FMDV) Type Asia 1, 63/72 was cloned in an expression vector, pUR222. A protein of 38 kd was produced by the clone which reacted with the antibodies raised against the virus. A 20 kd protein which may be derived from the 38 kd protein contained the antigenic epitopes of the protein VP1 of the virus. Injection of 10-20 micrograms of the partially purified 38 and 20 kd proteins or a lysate of cells containing 240 micrograms of the proteins elicited high titers of FMDV specific antibodies in guinea pigs and cattle respectively. Also, at these concentrations, the proteins protected 5 of 8 guinea pigs and 3 of 8 cattle when challenged with a virulent virus.
Resumo:
Polyclonal antibodies were raised against the Physalis mottle virus (PhMV) and its denatured coat protein (PhMV-P). Analysis of the reactivity of the polyclonal antibodies with tryptic peptides of PhMV-P in dot-blot assays revealed that many of the epitopes were common to intact virus and denatured coat protein. Five monoclonal antibodies to the intact virus were obtained using hybridoma technology. These monoclonal antibodies reacted well with the denatured coat protein. Epitope analysis suggested that probably these monoclonal antibodies recognize overlapping epitopes. This was substantiated by epitope mapping using the CNBr digest of PhMV-P in western blots. All the five monoclonals recognized the N-terminal 15 K fragment. Attempts to further delineate the specific region recognized by the monoclonals by various enzymatic cleavages resulted in the loss of reactivity in all the cases. The results indicate that these monoclonals probably recognize epitopes within the N-terminal 15 K fragment of the coat protein.
Resumo:
Sesbania mosaic virus (SeMV) is a single-stranded positive-sense RNA plant virus belonging to the genus Sobemovirus. The movement protein (MP) encoded by SeMV ORF1 showed no significant sequence similarity with MPs of other genera, but showed 32% identity with the MP of Southern bean mosaic virus within the Sobemovirus genus. With a view to understanding the mechanism of cell-to-cell movement in sobemoviruses, the SeMV MP gene was cloned, over-expressed in Escherichia coli and purified. Interaction of the recombinant MP with the native virus (NV) was investigated by ELISA and pull-down assays. It was observed that SeMV MP interacted with NV in a concentration- and pH-dependent manner. Analysis of N- and C-terminal deletion mutants of the MP showed that SeMV MP interacts with the NV through the N- terminal 49 amino acid segment. Yeast two-hybrid assays confirmed the in vitro observations, and suggested that SeMV might belong to the class of viruses that require MP and NV/coat protein for cell-to-cell movement.
Resumo:
Sesbania mosaic virus (SMV) is a plant virus infecting Sesbania grandiflora plants in Andhra Pradesh, India. Amino acid sequence of the tryptic peptides of SMV coat protein were determined using a gas phase sequenator. These sequences showed identical amino acids at 69% of the positions when aligned with the corresponding residues of southern bean mosaic virus (SBMV).Crystals diffracting to better than 3 Å resolution were obtained by precipitating the virus with ammonium sulphate. The crystals belonged to rhombohedral space group R3 with α = 291·4 Å and α = 61·9°. Three-dimensional X-ray diffraction data on these crystals were collected to a resolution of 4·7 Å, using a Siemens-Nicolet area detector system. Self-rotation function studies revealed the icosahedral symmetry of the virus particles, as well as their precise orientation in the unit cell. Cross-rotation function and modelling studies with SBMV showed that it is a valid starting model for SMV structure determination. Low resolution phases computed using a polyalanine model of SBMV were subjected to refinement and extension by real-space electron density averaging and solvent flattening. The final electron density map revealed a polypeptide fold similar to SBMV. The single disulphide bridge of SBMV coat protein is retained in SMV. Four icosahedrally independent cation binding sites have been tentatively identified. Three of these sites, related by a quasi threefold axis, are also found in SBMV. The fourth site is situated on the quasi threefold axis. Aspartic acid residues, which replace Ile218 of SBMV from the quasi threefold-related subunits are suitable ligands to the cation at this site
Resumo:
Sesbania mosaic virus (SeMV) is a single strand positive-sense RNA plant virus that belongs to the genus Sobemovirus. The mechanism of cell-to-cell movement in sobemoviruses has not been well studied. With a view to identify the viral encoded ancillary proteins of SeMV that may assist in cell-to-cell movement of the virus, all the proteins encoded by SeMV genome were cloned into yeast Matchmaker system 3 and interaction studies were performed. Two proteins namely, viral protein genome linked (VPg) and a 10-kDa protein (P10) c v gft encoded by OFR 2a, were identified as possible interacting partners in addition to the viral coat protein (CP). Further characterization of these interactions revealed that the movement protein (MP) recognizes cognate RNA through interaction with VPg, which is covalently linked to the 59 end of the RNA. Analysis of the deletion mutants delineated the domains of MP involved in the interaction with VPg and P10. This study implicates for the first time that VPg might play an important role in specific recognition of viral genome by MP in SeMV and shed light on the possible role of P10 in the viral movement.
Resumo:
The current standard of care for hepatitis C virus (HCV) infection - combination therapy with pegylated interferon and ribavirin - elicits sustained responses in only similar to 50% of the patients treated. No alternatives exist for patients who do not respond to combination therapy. Addition of ribavirin substantially improves response rates to interferon and lowers relapse rates following the cessation of therapy, suggesting that increasing ribavirin exposure may further improve treatment response. A key limitation, however, is the toxic side-effect of ribavirin, hemolytic anemia, which often necessitates a reduction of ribavirin dosage and compromises treatment response. Maximizing treatment response thus requires striking a balance between the antiviral and hemolytic activities of ribavirin. Current models of viral kinetics describe the enhancement of treatment response due to ribavirin. Ribavirin-induced anemia, however, remains poorly understood and precludes rational optimization of combination therapy. Here, we develop a new mathematical model of the population dynamics of erythrocytes that quantitatively describes ribavirin-induced anemia in HCV patients. Based on the assumption that ribavirin accumulation decreases erythrocyte lifespan in a dose-dependent manner, model predictions capture several independent experimental observations of the accumulation of ribavirin in erythrocytes and the resulting decline of hemoglobin in HCV patients undergoing combination therapy, estimate the reduced erythrocyte lifespan during therapy, and describe inter-patient variations in the severity of ribavirin-induced anemia. Further, model predictions estimate the threshold ribavirin exposure beyond which anemia becomes intolerable and suggest guidelines for the usage of growth hormones, such as erythropoietin, that stimulate erythrocyte production and avert the reduction of ribavirin dosage, thereby improving treatment response. Our model thus facilitates, in conjunction with models of viral kinetics, the rational identification of treatment protocols that maximize treatment response while curtailing side effects.
Resumo:
he ultrastructure of purified rinderpest virus and intracellular viral nucleocapsids from infected vero cells treated with a subtoxic dose of 5-fluorouracil (5-Fu) (1 mug/ml), has been analysed by transmission electron microscopy, and compared with that of normal virus particle and nucleocapsids. The results reveal dramatic alterations in the structure of both virions and nucleocapsids. The surface glycoprotein projection of virions was not seen or present at a much reduced level. The intracellular nucleocapsids showed pronounced structural changes,with respect to size, shape and fine structure. The length of treated nucleocapsids is much smaller as compared to the control. The central hollow core is missing in case of drug-treated nucleocapsid and the herring bone structure is replaced by a 'beads on string' structure. The presence of N protein, which is a major structural component of nucleocapsids was seen in 5-Fu-treated cells, but it was associated with a predominantly diffused form of nucleocapsids as seen by immunoelectron microscopy. We report here the first definitive and visual evidence of altered structure of virions and their nucleocapsids after 5-Fu treatment
Resumo:
Several H-2 defined cell lines were examined for their ability to support infection and replication of Japanese encephalitis virus (JEV) before their use in in vitro and in vivo stimulation protocols for generating cytotoxic T lymphocytes (CTLs) against JEV. Among II different cell lines tested, two H-2(d) macrophage tumour lines (P388D1, RAW 264.7), an H-2(d) hybridoma (Sp2/0), an H-2K(k)D(d) neuroblastoma (Neuro 2a), and H-2(k) fibroblast cell line (L929) were found to support JEV infection and replication. These cell lines were used to generate anti-JEV CTLs by using in vivo immunization followed by in vitro stimulation of BALB/c mice. We observed that not only syngeneic and allogeneic infected cells but also JEV-infected xenogeneic cells could prime BALB/c mice for the generation of JEV-specific CTLs upon subsequent in vitro stimulation of splenocytes with JEV-infected syngeneic cells. Although infected xenogeneic cells were used for immunization, the anti-JEV effecters that were generated lysed infected syngeneic targets but not JEV-infected xenogeneic or allogeneic target cells in a 5h Cr-51 release assay. These anti-JEV effecters recognized syngeneic target cells infected with West Nile virus to a lesser extent and were shown to be Lyt-2.2(+) T cells. The results of unlabelled cold target competition studies suggested alterations in the cell surface expression of viral antigenic determinants recognized by these CTLs. We further demonstrate that the JEV-specific CTLs generated could virtually block the release of infectious virus particles from infected P388D1 and Neuro 2a cells in vitro.