50 resultados para Work design


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Closed loop control of a grid connected VSI requires line current control and dc bus voltage control. The closed loop system comprising PR current controller and grid connected VSI with LCL filter is a higher order system. Closed loop control gain expressions are therefore difficult to obtain directly for such systems. In this work a simplified approach has been adopted to find current and voltage controller gain expressions for a 3 phase 4 wire grid connected VSI with LCL filter. The closed loop system considered here utilises PR current controller in natural reference frame and PI controller for dc bus voltage control. Asymptotic frequency response plot and gain bandwidth requirements of the system have been used for current control and voltage controller design. A simplified lower order model, derived for closed loop current control, is used for the dc bus voltage controller design. The adopted design method has been verified through experiments by comparison of the time domain response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

What is the scope and responsibilities of design? This work partially answers this by employing a normative approach to design of a biomass cook stove. This study debates on the sufficiency of existing design methodologies in the light of a capability approach. A case study of a biomass cook stove Astra Ole has elaborated the theoretical constructs of capability approach, which, in turn, has structured insights from field to evaluate the product. Capability approach based methodology is also prescriptively used to design the mould for rapid dissemination of the Astra Ole.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, spectrum sensing for cognitive radios is considered in the presence of multiple Primary Users (PU) using frequency-hopping communication over a set of frequency bands. The detection performance of the Fast Fourier Transform (FFT) Average Ratio (FAR) algorithm is obtained in closed-form, for a given FFT size and number of PUs. The effective throughput of the Secondary Users (SU) is formulated as an optimization problem with a constraint on the maximum allowable interference on the primary network. Given the hopping period of the PUs, the sensing duration that maximizes the SU throughput is derived. The results are validated using Monte Carlo simulations. Further, an implementation of the FAR algorithm on the Lyrtech (now, Nutaq) small form factor software defined radio development platform is presented, and the performance recorded through the hardware is observed to corroborate well with that obtained through simulations, allowing for implementation losses. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose - The purpose of this paper is to investigate the possibility to construct tissue-engineered bone repair scaffolds with pore size distributions using rapid prototyping techniques. Design/methodology/approach - The fabrication of porous scaffolds with complex porous architectures represents a major challenge in tissue engineering and the design aspects to mimic complex pore shape as well as spatial distribution of pore sizes of natural hard tissue remain unexplored. In this context, this work aims to evaluate the three-dimensional printing process to study its potential for scaffold fabrication as well as some innovative design of homogeneously porous or gradient porous scaffolds is described and such design has wider implication in the field of bone tissue engineering. Findings - The present work discusses biomedically relevant various design strategies with spatial/radial gradient in pore sizes as well as with different pore sizes and with different pore geometries. Originality/value - One of the important implications of the proposed novel design scheme would be the development of porous bioactive/biodegradable composites with gradient pore size, porosity, composition and with spatially distributed biochemical stimuli so that stem cells loaded into scaffolds would develop into complex tissues such as those at the bone-cartilage interface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper establishes the design requirements for the development and testing of direct supercritical carbon dioxide (sCO2) solar receivers. Current design considerations are based on the ASME Boiler and Pressure Vessel Code (BPVC). Section I (BPVC) considers typical boilers/superheaters (i.e. fired pressure vessels) which work under a constant low heat flux. Section VIII (BPVC) considers pressure vessels with operating pressures above 15 psig 2 bar] (i.e. unfired pressure vessels). Section III, Division I - Subsection NH (BPVC) considers a more detailed stress calculation, compared to Section I and Section VIII, and requires a creep-fatigue analysis. The main drawback from using the BPVC exclusively is the large safety requirements developed for nuclear power applications. As a result, a new set of requirements is needed to perform detailed thermal-structural analyses of solar thermal receivers subjected to a spatially-varying, high-intensity heat flux. The last design requirements document of this kind was an interim Sandia report developed in 1979 (SAND79-8183), but it only addresses some of the technical challenges in early-stage steam and molten-salt solar receivers but not the use of sCO2 receivers. This paper presents a combination of the ASME BPVC and ASME B31.1 Code modified appropriately to achieve the reliability requirements in sCO(2) solar power systems. There are five main categories in this requirements document: Operation and Safety, Materials and Manufacturing, Instrumentation, Maintenance and Environmental, and General requirements. This paper also includes the modeling guidelines and input parameters required in computational fluid dynamics and structural analyses utilizing ANSYS Fluent, ANSYS Mechanical, and nCode Design Life. The main purpose of this document is to serve as a reference and guideline for design and testing requirements, as well as to address the technical challenges and provide initial parameters for the computational models that will be employed for the development of sCO(2) receivers.