129 resultados para Window gardening.
Resumo:
A systematic investigation of monatomic spherical sorbates in the supercages of zeolites Y and A by molecular dynamics technique is presented. Rates of intercage diffusion, rates of cage visits, and the diffusion coefficients have been calculated as a function of the sorbate-zeolite interaction strength. These properties exhibit markedly different dependences on interaction strength for the two zeolites. The observed behavior is shown to be a consequence of the two principal mechanisms of intercage diffusion and the energetic barrier associated with them. The diffusion coefficient and other properties associated with intercage diffusion are found to be directly proportional to the reciprocal of the square of the sorbate diameter when the sorbate diameter is significantly smaller than the window diameter. As the sorbate diameter increases, a peak is observed in all the transport properties investigated including the diffusion coefficient. We call this surprising effect as the ring or levitation effect and it explains several anomalous results reported in the literature and suggests a breakdown of the geometrical criterion for diffusion of sorbates. It shows that under certain conditions nongeometrical factors play a major role and geometrical factors become secondary in the determination of the molecular sieve property. A generalized parameter has been proposed which suggests conditions under which one can expect the ring or levitation effect in any porous medium. Inverse size selectivity becomes operative under these conditions.
Resumo:
Recent computer simulations on zeolites Y and A have found that the diffusion coefficient and the rate of intercage diffusion exhibit, apart from a linear dependence on the reciprocal of the square of the sorbate diameter, an anomalous peak as sorbate diameter approaches the window diameter. Here we report molecular dynamics simulations of zeolite NaA incorporating framework flexibility as a function of sorbate diameter in order to verify the existence of anomalous diffusion. Results suggest persistence of anomalous diffusion or ring effect. This suggests that the anomalous behavior is a general effect characteristic of zeolites Y and A. The barrier for diffusion across the eight-ring window is seen to be negative and is found to decrease with sorbate size. The effect of sorbate on the cage motion has also been investigated. Results suggest that the window expands during intercage migration only if the sorbate size is comparable to the window diameter. Flexible cage simulations yield a higher value for the diffusion coefficient and also the rate of intercage diffusion. This increase has been shown to be due to an increase in the intercage diffusions via the centralized diffusion mode rather than the surface-mediated mode. It is shown that this increase arises from an increase in the single particle density distribution in the region near the cage center.
Resumo:
Running fractal dimensions were measured on four channels of an electroencephalogram (EEG) recorded from a normal volunteer. The changes in the background activity due to eye closure were clearly differentiated by the fractal method. The compressed spectral array (CSA) and the running fractal dimensions of the EEG showed corresponding changes with respect to change in the background activity. The fractal method was also successful in detecting low amplitude spikes and the changes in the patterns in the EEG. The effects of different window lengths and shifts on the running fractal dimension have also been studied. The utility of fractal method for EEG data compression is highlighted.
Resumo:
Various geometrical and energetic distribution functions and other properties connected with the cage-to-cage diffusion of xenon in sodium Y zeolite have been obtained from long molecular dynamics calculations. Analysis of diffusion pathways reveals two interesting mechanisms-surface-mediated and centralized modes for cage-to-cage diffusion. The surface-mediated mode of diffusion exhibits a small positive barrier, while the centralized diffusion exhibits a negative barrier for the sorbate to diffuse across the 12-ring window. In both modes, however, the sorbate has to be activated from the adsorption site to enable it to gain mobility. The centralized diffusion additionally requires the sorbate to be free of the influence of the surface of the cage as well. The overall rate for cage-to-cage diffusion shows an Arrhenius temperature dependence with E(a) = 3 kJ/mol. It is found that the decay in the dynamical correction factor occurs on a time scale comparable to the cage residence time. The distributions of barrier heights have been calculated. Functions reflecting the distribution of the sorbate-zeolite interaction at the window and the variations of the distance between the sorbate and the centers of the parent and daughter cages are presented.
Resumo:
Miscibilities of some poly[aromatic (meth)acrylatels namely, poly(pheny1 acrylate) (PPA), poly(pheny1 methacrylate) (PPMA), poly(benzy1 acrylate) (PBA), and poly(benzy1 methacrylate) (PBMAY polystyrene blends, have been studied through the so-called copolymer effect by incorporating acrylonitrile units in PS chains. In these systems, miscibility occurs on account of the strong repulsion between the acrylonitrile and styrene units in the copolymer. PBA and PBMA were blended with different styreneacrylonitrile (SAN) copolymers. A miscibility window has been identified for the latter system, and from these limits, the binary interaction energy density parameters (B,j.’sw) ere calculated. Using these values, the miscibilities in other homopolymer-copolymer and copolymer-copolymer systems containing benzyl methacrylate, acrylonitrile, and styrene monomer units have been predicted and subsequently verified experimentally. The miscibility window limits in poly[aromatic (meth)acrylate]s/SAN copolymer blends have been compared. PBA does not exhibit a miscibility window with SAN copolymers, which has been explained by the weak intramolecular hydrogen bonding in PBA. The miscibility window in the PBW SAN copolymer system, as observed by DSC, shows a considerable narrowing in nonradiative energy transfer (NRET) measurements, as this technique is more sensitive.
Resumo:
Miscibilities of some poly[aromatic (meth)crylate]s namely, poly(phenyl acrylate) (PPA, poly(phenyl methacrylate) (PPMA), poly(benzyl acrylate) (PBA), and poly(benzyl methacrylate) (PBMA)/polystyrene blends, have been studied through the so-called copolymer effect by incorporating acrylonitrile units in PS chains. In these systems, miscibility occurs on account of the strong repulsion between the acrylonitrile and styrene units in the copolymer. PBA and PBMA were blended with different styrene-acrylonitrile (SAN) copolymers. A miscibility window has been identified for the latter system, and from these limits, the binary interaction energy density parameters (Bij's) were calculated. Using these values, the miscibilities in other homopolymer-copolymer and copolymer-copolymer systems containing benzyl methacrylate, acrylonitrile, and styrene monomer units have been predicted and subsequently verified experimentally. The miscibility window limits in poly[aromatic (meth)acrylate]s/SAN copolymer blends have been compared. PBA does not exhibit a miscibility window with SAN copolymers, which has been explained by the weak intramolecular hydrogen bonding in PBA. The miscibility window in the PBMA/SAN copolymer system, as observed by DSC, shows a considerable narrowing in nonradiative energy transfer (NRET) measurements, as this technique is more sensitive.
Resumo:
We highlight our recent experimental work on an efficient molecular nonlinear optical crystal, 3-methoxy 4-hydroxy benzaldehyde (MHBA). Optical quality single crystals of MHBA were grown from mixtures of solvents and from melt. The overall absorption and transparency window were improved by growing them in a mixture of chloroform and acetone. The grown crystals were characterized for their optical transmission, mechanical hardness and laser damage. We have observed a strong correlation between mechanical properties and laser induced damage.
Resumo:
Measured health signals incorporate significant details about any malfunction in a gas turbine. The attenuation of noise and removal of outliers from these health signals while preserving important features is an important problem in gas turbine diagnostics. The measured health signals are a time series of sensor measurements such as the low rotor speed, high rotor speed, fuel flow, and exhaust gas temperature in a gas turbine. In this article, a comparative study is done by varying the window length of acausal and unsymmetrical weighted recursive median filters and numerical results for error minimization are obtained. It is found that optimal filters exist, which can be used for engines where data are available slowly (three-point filter) and rapidly (seven-point filter). These smoothing filters are proposed as preprocessors of measurement delta signals before subjecting them to fault detection and isolation algorithms.
Resumo:
We provide a comparative performance evaluation of packet queuing and link admission strategies for low-speed wide area network Links (e.g. 9600 bps, 64 kbps) that interconnect relatively highspeed, connectionless local area networks (e.g. 10 Mbps). In particular, we are concerned with the problem of providing differential quality of service to interLAN remote terminal and file transfer sessions, and throughput fairness between interLAN file transfer sessions. We use analytical and simulation models to study a variety of strategies. Our work also serves to address the performance comparison of connectionless vs. connection-oriented interconnection of CLNS LANS. When provision of priority at the physical transmission level is not feasible, we show, for low-speed WAN links (e.g. 9600 bps), the superiority of connection-oriented interconnection of connectionless LANs, with segregation of traffic streams with different QoS requirements into different window flow controlled connections. Such an implementation can easily be obtained by transporting IP packets over an X.25 WAN. For 64 kbps WAN links, there is a drop in file transfer throughputs, owing to connection overheads, but the other advantages are retained, The same solution also helps to provide throughput fairness between interLAN file transfer sessions. We also provide a corroboration of some of our modelling results with results from an experimental test-bed.
Resumo:
Positions of potential energy minima for spherical monatomic sorbates in zeolite NaY have been identified for different sizes of the sorbate. It is found that for small sorbates (sigma less than or equal to 4.96 Angstrom) there are only six adsorption sites per alpha-cage, which are located close to the inner surface of the alpha-cage. For larger sorbates, additional sites of comparable energies appear close to the 12-ring window which forms the bottleneck for intercage diffusion. Minimum energy paths between these sites have been computed. These suggest that the barriers for both intracage and intercage site-to-site migrations are comparable and decrease with increase in sorbate size. Earlier simulation studies on the diffusion of monatomic sorbates in zeolites indicated that there is a dramatic change in the nature of dependence of D on sorbate size around 4.96 Angstrom, for zeolite NaY. Therefore, the present results suggest that the dependence of D on sorbate size and the changes in the potential energy landscape are correlated. The sorbate-zeolite system is characterized by a flatter potential energy landscape when the sorbate size is large. (C) 1999 American Institute of Physics. [S0021-9606(99)51110-0].
Resumo:
Fine particle and large surface area Cu/CeO2 catalysts of crystallite sizes in the range of 100-200 Angstrom synthesized by the solution combustion method have been investigated for NO reduction. Five percent Cu/CeO2 catalyst shows nearly 100% conversion of NO by NH3 below 300 degrees C, whereas pure ceria and Zr, Y, and Ca doped ceria show 85-95% NO conversion above 600 degrees C. Similarly NO reduction by CO has been observed over 5% Cu/CeO2 with nearly 100% conversion below 300 degrees C. Hydrocarbon (n-butane) oxidation by NO to CO2, N-2, and H2O has also been demonstrated over this catalyst below 350 degrees C making Cu/CeO2 a new NO reduction catalyst in the low temperature window of 150-350 degrees C. Kinetics of NO reduction over 5% Cu/CeO2 have also been investigated. The rate constants are in the range of 1.4 x 10(4) to 2.3 x 10(4) cm(3) g(-1) s(-1) between 170 and 300 degrees C. Cu/CeO2 catalysts are characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and electron paramagnetic resonance spectroscopy where Cu2+ ions are shown to be dispersed on the CeO2 surface. (C) 1999 Academic Press.
Resumo:
A simple method to generate time domain tailored waveforms for excitation of ion axial amplitude in Paul trap mass spectrometers is described. The method is based on vector summation of sine waves followed by time domain sampling to obtain the discrete time domain data. A smoothing technique based on the time domain Kaiser window is then applied to the data so as to minimize the frequency domain Gibb's oscillations. The dynamic range of the time domain signal is controlled by phase modulation and time extension of the time domain waveform. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
Timer-based mechanisms are often used in several wireless systems to help a given (sink) node select the best helper node among many available nodes. Specifically, a node transmits a packet when its timer expires, and the timer value is a function of its local suitability metric. In practice, the best node gets selected successfully only if no other node's timer expires within a `vulnerability' window after its timer expiry. In this paper, we provide a complete closed-form characterization of the optimal metric-to-timer mapping that maximizes the probability of success for any probability distribution function of the metric. The optimal scheme is scalable, distributed, and much better than the popular inverse metric timer mapping. We also develop an asymptotic characterization of the optimal scheme that is elegant and insightful, and accurate even for a small number of nodes.
Resumo:
Because of the wide variety of projected applications of ultrapure nitrides in advanced technologies, there is interest in developing new cost-effective methods of synthesis. Explored in this study is the use of ammonia and hydrazine for the synthesis of nitrides from oxides, sulfides and chlorides. Even when the standard Gibbs energy change for the nitridation reactions involved are moderately positive, the reaction can be made to proceed by lowering the partial pressure of the product gas below its equilibrium value. Use of a metastable form of precursor in the nanometric size range is an alternative method to facilitate nitridation. Ellingham-Richardson-Jeffes diagrams are used for a panoramic presentation of the driving force for each set of reactions as a function of temperature. Oxides are the least promising precursors for nitride synthesis; sulfides offer a larger synthetic window for many useful nitrides such as BN, AlN, InN, VN, TiN, ThN and Si3N4. The standard Gibbs free energy changes for reactions involving chlorides with either ammonia or hydrazine are much more negative. Hydrazine is a more powerful nitriding agent than ammonia. The metastability of hydrazine requires that it be introduced into a reactor through a water-cooled lance. The use of volatile halides with ammonia or hydrazine offers the potential for synthesis of pure and doped nanocrystalline nitrides. Nitride thin films can also be prepared by suitable adaptations of the chloride route. (C) 2002 Kluwer Academic Publishers.
Resumo:
BaTiO3 and Ba0.9Ca0.1TiO3 thin films were deposited on the p – type Si substrate by pulsed excimer laser ablation technique. The Capacitance – Voltage (C-V) measurement measured at 1 MHz exhibited a clockwise rotating hysteresis loop with a wide memory window for the Metal – Ferroelectric – Semiconductor (MFS) capacitor confirming the ferroelectric nature. The low frequency C – V measurements exhibited the response of the minority carriers in the inversion region while at 1 MHz the C – V is of a high frequency type with minimum capacitance in the inversion region. The interface states of both the MFS structures were calculated from the Castagne – Vaipaille method (High – low frequency C – V curve). Deep Level Transient Spectroscopy (DLTS) was used to analyze the interface traps and capture cross section present in the MFS capacitor. There were distinct peaks present in the DLTS spectrum and these peaks were attributed to the presence of the discrete interface states present at the semiconductor – ferroelectric interface. The distribution of calculated interface states were mapped with the silicon energy band gap for both the undoped and Ca doped BaTiO3 thin films using both the C – V and DLTS method. The interface states of the Ca doped BaTiO3 thin films were found to be higher than the pure BaTiO3 thin films.