50 resultados para Wiener-Hopf-Levinson


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: The authors aim at developing a pseudo-time, sub-optimal stochastic filtering approach based on a derivative free variant of the ensemble Kalman filter (EnKF) for solving the inverse problem of diffuse optical tomography (DOT) while making use of a shape based reconstruction strategy that enables representing a cross section of an inhomogeneous tumor boundary by a general closed curve. Methods: The optical parameter fields to be recovered are approximated via an expansion based on the circular harmonics (CH) (Fourier basis functions) and the EnKF is used to recover the coefficients in the expansion with both simulated and experimentally obtained photon fluence data on phantoms with inhomogeneous inclusions. The process and measurement equations in the pseudo-dynamic EnKF (PD-EnKF) presently yield a parsimonious representation of the filter variables, which consist of only the Fourier coefficients and the constant scalar parameter value within the inclusion. Using fictitious, low-intensity Wiener noise processes in suitably constructed ``measurement'' equations, the filter variables are treated as pseudo-stochastic processes so that their recovery within a stochastic filtering framework is made possible. Results: In our numerical simulations, we have considered both elliptical inclusions (two inhomogeneities) and those with more complex shapes (such as an annular ring and a dumbbell) in 2-D objects which are cross-sections of a cylinder with background absorption and (reduced) scattering coefficient chosen as mu(b)(a)=0.01mm(-1) and mu('b)(s)=1.0mm(-1), respectively. We also assume mu(a) = 0.02 mm(-1) within the inhomogeneity (for the single inhomogeneity case) and mu(a) = 0.02 and 0.03 mm(-1) (for the two inhomogeneities case). The reconstruction results by the PD-EnKF are shown to be consistently superior to those through a deterministic and explicitly regularized Gauss-Newton algorithm. We have also estimated the unknown mu(a) from experimentally gathered fluence data and verified the reconstruction by matching the experimental data with the computed one. Conclusions: The PD-EnKF, which exhibits little sensitivity against variations in the fictitiously introduced noise processes, is also proven to be accurate and robust in recovering a spatial map of the absorption coefficient from DOT data. With the help of shape based representation of the inhomogeneities and an appropriate scaling of the CH expansion coefficients representing the boundary, we have been able to recover inhomogeneities representative of the shape of malignancies in medical diagnostic imaging. (C) 2012 American Association of Physicists in Medicine. [DOI: 10.1118/1.3679855]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let G be the group . For this group we prove a version of Schwartz's theorem on spectral analysis for the group G. We find the sharp range of Lebesgue spaces L (p) (G) for which a smooth function is not mean periodic unless it is a cusp form. Failure of the Schwartz-like theorem is also proved when C (a)(G) is replaced by L (p) (G) with suitable p. We show that the last result is linked with the failure of the Wiener-tauberian theorem for G.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to the inherent feedback in a decision feedback equalizer (DFE) the minimum mean square error (MMSE) or Wiener solution is not known exactly. The main difficulty in such analysis is due to the propagation of the decision errors, which occur because of the feedback. Thus in literature, these errors are neglected while designing and/or analyzing the DFEs. Then a closed form expression is obtained for Wiener solution and we refer this as ideal DFE (IDFE). DFE has also been designed using an iterative and computationally efficient alternative called least mean square (LMS) algorithm. However, again due to the feedback involved, the analysis of an LMS-DFE is not known so far. In this paper we theoretically analyze a DFE taking into account the decision errors. We study its performance at steady state. We then study an LMS-DFE and show the proximity of LMS-DFE attractors to that of the optimal DFE Wiener filter (obtained after considering the decision errors) at high signal to noise ratios (SNR). Further, via simulations we demonstrate that, even at moderate SNRs, an LMS-DFE is close to the MSE optimal DFE. Finally, we compare the LMS DFE attractors with IDFE via simulations. We show that an LMS equalizer outperforms the IDFE. In fact, the performance improvement is very significant even at high SNRs (up to 33%), where an IDFE is believed to be closer to the optimal one. Towards the end, we briefly discuss the tracking properties of the LMS-DFE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is proved that there does not exist any non zero function in with if its Fourier transform is supported by a set of finite packing -measure where . It is shown that the assertion fails for . The result is applied to prove L-p Wiener Tauberian theorems for R-n and M(2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article, we obtain explicit solutions of a linear PDE subject to a class of radial square integrable functions with a monotonically increasing weight function |x|(n-1)e(beta vertical bar x vertical bar 2)/2, beta >= 0, x is an element of R-n. This linear PDE is obtained from a system of forced Burgers equation via the Cole-Hopf transformation. For any spatial dimension n > 1, the solution is expressed in terms of a family of weighted generalized Laguerre polynomials. We also discuss the large time behaviour of the solution of the system of forced Burgers equation.