116 resultados para Weather simulations
Resumo:
A numerical study of the ductile rupture in a metal foil constrained between two stiff ceramic blocks is performed. The finite element analysis is carried out under the conditions of mode I, plane strain, small-scale yielding. The rate-independent version of the Gurson model that accounts for the ductile failure mechanisms of microvoid nucleation, growth and coalescence is employed to represent the behavior of the metal foil. Different distributions of void nucleating sites in the metal foil are considered for triggering the initiation of discrete voids. The results clearly show that far-field triaxiality-induced cavitation is the dominant failure mode when the spacing of the void nucleating sites is large. On the contrary, void coalescence near the notch tip is found to be the operative failure mechanism when closely spaced void nucleating sites are considered.
Resumo:
The problem of spurious increase in volume fraction of second-phase particles during computer simulations of coarsening is examined. The origin of this problem is traced to the use of too long a time step (used for numerical integration of growth rates with respect to time) which leads to small particles with large negative growth rates shrinking to negative radii at the end of the time step. Such a shrinkage to negative sizes has the effect of pumping solute into the system. It is therefore suggested that the length of the time step be chosen in accordance with the size of the smallest particle present in the system. It is shown that spurious increase in particle Volume has a significant effect on the particle size distributions in the scaling regime (making them broader and more skewed in the Lifshitz-Slyozov-Wagner model). Its effect on coarsening kinetics, however, is found to be small.
Resumo:
In this paper, an overview of some recent computational studies by the authors on ductile crack initiation under mode I, dynamic loading is presented. In these studies, a large deformation finite element procedure is employed along with the viscoplastic version of the Gurson constitutive model that accounts for the micro-mechanical processes of void nucleation, growth and coalescence. A three-point bend fracture specimen subjected to impact, and a single edge notched specimen loaded by a tensile stress pulse are analysed. Several loading rates are simulated by varying the impact speed or the rise time and magnitude of the stress pulse. A simple model involving a semi-circular notch with a pre-nucleated circular hole situated ahead of it is considered. The growth of the hole and its interaction with the notch tip, which leads to plastic strain and porosity localization in the ligament connecting them, is simulated. The role of strain-rate dependence on ductile crack initiation at high loading rates, and the specimen geometry effect on the variation of dynamic fracture toughness with loading rate are Investigated.
Resumo:
We explore a full sphere (2D axisymmetric) kinematic solar dynamo model based on the Babcock-Leighton idea that the poloidal field is generated in the surface layers from the decay of tilted bipolar solar active regions. This model incorporates the helioseismically deduced solar rotation profile and an algorithm for buoyancy motivated from simulations of flux tube dynamics. A prescribed deep meridional circulation plays an important role in the advection of magnetic flux. We specifically address the parity issue and show that – contrary to some recent claims – the Babcock-Leighton dynamo can reproduce solar-like dipolar parity if certain reasonable conditions are satisfied in the solar interior, the most important requirement being that the poloidal field of the two hemispheres be efficiently coupled across the equator.
Resumo:
We have analysed the diurnal cycle of rainfall over the Indian region (10S-35N, 60E-100E) using both satellite and in-situ data, and found many interesting features associated with this fundamental, yet under-explored, mode of variability. Since there is a distinct and strong diurnal mode of variability associated with the Indian summer monsoon rainfall, we evaluate the ability of the Weather Research and Forecasting Model (WRF) to simulate the observed diurnal rainfall characteristics. The model (at 54km grid-spacing) is integrated for the month of July, 2006, since this period was particularly favourable for the study of diurnal cycle. We first evaluate the sensitivity of the model to the prescribed sea surface temperature (SST), by using two different SST datasets, namely, Final Analyses (FNL) and Real-time Global (RTG). It was found that with RTG SST the rainfall simulation over central India (CI) was significantly better than that with FNL. On the other hand, over the Bay of Bengal (BoB), rainfall simulated with FNL was marginally better than with RTG. However, the overall performance of RTG SST was found to be better than FNL, and hence it was used for further model simulations. Next, we investigated the role of the convective parameterization scheme on the simulation of diurnal cycle of rainfall. We found that the Kain-Fritsch (KF) scheme performs significantly better than Betts-Miller-Janjić (BMJ) and Grell-Devenyi schemes. We also studied the impact of other physical parameterizations, namely, microphysics, boundary layer, land surface, and the radiation parameterization, on the simulation of diurnal cycle of rainfall, and identified the “best” model configuration. We used this configuration of the “best” model to perform a sensitivity study on the role of various convective components used in the KF scheme. In particular, we studied the role of convective downdrafts, convective timescale, and feedback fraction, on the simulated diurnal cycle of rainfall. The “best” model simulations, in general, show a good agreement with observations. Specifically, (i) Over CI, the simulated diurnal rainfall peak is at 1430 IST, in comparison to the observed 1430-1730 IST peak; (ii) Over Western Ghats and Burmese mountains, the model simulates a diurnal rainfall peak at 1430 IST, as opposed to the observed peak of 1430-1730 IST; (iii) Over Sumatra, both model and observations show a diurnal peak at 1730 IST; (iv) The observed southward propagating diurnal rainfall bands over BoB are weakly simulated by WRF. Besides the diurnal cycle of rainfall, the mean spatial pattern of total rainfall and its partitioning between the convective and stratiform components, are also well simulated. The “best” model configuration was used to conduct two nested simulations with one-way, three-level nesting (54-18-6km) over CI and BoB. While, the 54km and 18km simulations were conducted for the whole of July, 2006, the 6km simulation was carried out for the period 18 - 24 July, 2006. The results of our coarse- and fine-scale numerical simulations of the diurnal cycle of monsoon rainfall will be discussed.
Resumo:
The impact of realistic representation of sea surface temperature (SST) on the numerical simulation of track and intensity of tropical cyclones formed over the north Indian Ocean is studied using the Weather Research and Forecast (WRF) model. We have selected two intense tropical cyclones formed over the Bay of Bengal for studying the SST impact. Two different sets of SSTs were used in this study: one from TRMM Microwave Imager (TMI) satellite and other is the weekly averaged Reynold's SST analysis from National Center for Environmental Prediction (NCEP). WRF simulations were conducted using the Reynold's and TMI SST as model boundary condition for the two cyclone cases selected. The TMI SST which has a better temporal and spatial resolution showed sharper gradient when compared to the Reynold's SST. The use of TMI SST improved the WRF cyclone intensity prediction when compared to that using Reynold's SST for both the cases studied. The improvements in intensity were mainly due to the improved prediction of surface latent and sensible heat fluxes. The use of TMI SST in place of Reynold's SST improved cyclone track prediction for Orissa super cyclone but slightly degraded track prediction for cyclone Mala. The present modeling study supports the well established notion that the horizontal SST gradient is one of the major driving forces for the intensification and movement of tropical cyclones over the Indian Ocean.
Resumo:
The swirling colors of aurorae, familiar to many in polar communities, can occasionally be seen at middle latitudes in locations such as southern Canada and central Europe. But in rare instances, aurorae can even be seen in the tropics. On 6 February 1872, news of the sighting of one such aurora was carried by the Times of India newspaper. The aurora occurred on 4 February 1872 and, as noted, was also observed over the Middle East.
Resumo:
Size and strain rate effects are among several factors which play an important role in determining the response of nanostructures, such as their deformations, to the mechanical loadings. The mechanical deformations in nanostructure systems at finite temperatures are intrinsically dynamic processes. Most of the recent works in this context have been focused on nanowires [1, 2], but very little attention has been paid to such low dimensional nanostructures as quantum dots (QDs). In this contribution, molecular dynamics (MD) simulations with an embedded atom potential method(EAM) are carried out to analyse the size and strain rate effects in the silicon (Si) QDs, as an example. We consider various geometries of QDs such as spherical, cylindrical and cubic. We choose Si QDs as an example due to their major applications in solar cells and biosensing. The analysis has also been focused on the variation in the deformation mechanisms with the size and strain rate for Si QD embedded in a matrix of SiO2 [3] (other cases include SiN and SiC matrices).It is observed that the mechanical properties are the functions of the QD size, shape and strain rate as it is in the case for nanowires [2]. We also present the comparative study resulted from the application of different EAM potentials in particular, the Stillinger-Weber (SW) potential, the Tersoff potentials and the environment-dependent interatomic potential (EDIP) [1]. Finally, based on the stabilized structural properties we compute electronic bandstructures of our nanostructures using an envelope function approach and its finite element implementation.
Resumo:
In a statistical downscaling model, it is important to remove the bias of General Circulations Model (GCM) outputs resulting from various assumptions about the geophysical processes. One conventional method for correcting such bias is standardisation, which is used prior to statistical downscaling to reduce systematic bias in the mean and variances of GCM predictors relative to the observations or National Centre for Environmental Prediction/ National Centre for Atmospheric Research (NCEP/NCAR) reanalysis data. A major drawback of standardisation is that it may reduce the bias in the mean and variance of the predictor variable but it is much harder to accommodate the bias in large-scale patterns of atmospheric circulation in GCMs (e.g. shifts in the dominant storm track relative to observed data) or unrealistic inter-variable relationships. While predicting hydrologic scenarios, such uncorrected bias should be taken care of; otherwise it will propagate in the computations for subsequent years. A statistical method based on equi-probability transformation is applied in this study after downscaling, to remove the bias from the predicted hydrologic variable relative to the observed hydrologic variable for a baseline period. The model is applied in prediction of monsoon stream flow of Mahanadi River in India, from GCM generated large scale climatological data.
Resumo:
Clouds are the largest source of uncertainty in climate science, and remain a weak link in modeling tropical circulation. A major challenge is to establish connections between particulate microphysics and macroscale turbulent dynamics in cumulus clouds. Here we address the issue from the latter standpoint. First we show how to create bench-scale flows that reproduce a variety of cumulus-cloud forms (including two genera and three species), and track complete cloud life cycles-e.g., from a ``cauliflower'' congestus to a dissipating fractus. The flow model used is a transient plume with volumetric diabatic heating scaled dynamically to simulate latent-heat release from phase changes in clouds. Laser-based diagnostics of steady plumes reveal Riehl-Malkus type protected cores. They also show that, unlike the constancy implied by early self-similar plume models, the diabatic heating raises the Taylor entrainment coefficient just above cloud base, depressing it at higher levels. This behavior is consistent with cloud-dilution rates found in recent numerical simulations of steady deep convection, and with aircraft-based observations of homogeneous mixing in clouds. In-cloud diabatic heating thus emerges as the key driver in cloud development, and could well provide a major link between microphysics and cloud- scale dynamics.
Resumo:
To realistically simulate the motion of flexible objects such as ropes, strings, snakes, or human hair,one strategy is to discretise the object into a large number of small rigid links connected by rotary or spherical joints. The discretised system is highly redundant and the rotations at the joints (or the motion of the other links) for a desired Cartesian motion of the end of a link cannot be solved uniquely. In this paper, we propose a novel strategy to resolve the redundancy in such hyper-redundant systems.We make use of the classical tractrix curve and its attractive features. For a desired Cartesian motion of the `head'of a link, the `tail' of the link is moved according to a tractrix,and recursively all links of the discretised objects are moved along different tractrix curves. We show that the use of a tractrix curve leads to a more `natural' motion of the entire object since the motion is distributed uniformly along the entire object with the displacements tending to diminish from the `head' to the `tail'. We also show that the computation of the motion of the links can be done in real time since it involves evaluation of simple algebraic, trigonometric and hyperbolic functions. The strategy is illustrated by simulations of a snake, tying of knots with a rope and a solution of the inverse kinematics of a planar hyper-redundant manipulator.