171 resultados para Vehicle Noise Standards.
Resumo:
This paper describes a predictive model for breakout noise from an elliptical duct or shell of finite length. The transmission mechanism is essentially that of ``mode coupling'', whereby higher structural modes in the duct walls get excited because of non-circularity of the wall. Effect of geometry has been taken care of by evaluating Fourier coefficients of the radius of curvature. The noise radiated from the duct walls is represented by that from a finite vibrating length of a semi infinite cylinder in a free field. Emphasis is on understanding the physics of the problem as well as analytical modeling. The analytical model is validated with 3-D FEM. Effects of the ovality, curvature, and axial terminations of the duct have been demonstrated. (C) 2010 Institute of Noise Control Engineering.
Resumo:
The stochasticity of domain-wall (DW) motion in magnetic nanowires has been probed by measuring slow fluctuations, or noise, in electrical resistance at small magnetic fields. By controlled injection of DWs into isolated cylindrical nanowires of nickel, we have been able to track the motion of the DWs between the electrical leads by discrete steps in the resistance. Closer inspection of the time dependence of noise reveals a diffusive random walk of the DWs with a universal kinetic exponent. Our experiments outline a method with which electrical resistance is able to detect the kinetic state of the DWs inside the nanowires, which can be useful in DW-based memory designs.
Resumo:
Anderson localised states in the bulk of a disordered medium appear as sharp resonances near the surface. The resonant backscattering leads to an energy-dependent random time delay for an incident electron. We derive an analytic expression for the delay-time probability distribution at a given energy. This is shown to give a 1/f noise for the surface currents in general.
Resumo:
With the objective of better understanding the significance of New Car Assessment Program (NCAP) tests conducted by the National Highway Traffic Safety Administration (NHTSA), head-on collisions between two identical cars of different sizes and between cars and a pickup truck are studied in the present paper using LS-DYNA models. Available finite element models of a compact car (Dodge Neon), midsize car (Dodge Intrepid), and pickup truck (Chevrolet C1500) are first improved and validated by comparing theanalysis-based vehicle deceleration pulses against corresponding NCAP crash test histories reported by NHTSA. In confirmation of prevalent perception, simulation-bascd results indicate that an NCAP test against a rigid barrier is a good representation of a collision between two similar cars approaching each other at a speed of 56.3 kmph (35 mph) both in terms of peak deceleration and intrusions. However, analyses carried out for collisions between two incompatible vehicles, such as an Intrepid or Neon against a C1500, point to the inability of the NCAP tests in representing the substantially higher intrusions in the front upper regions experienced by the cars, although peak decelerations in cars arc comparable to those observed in NCAP tests. In an attempt to improve the capability of a front NCAP test to better represent real-world crashes between incompatible vehicles, i.e., ones with contrasting ride height and lower body stiffness, two modified rigid barriers are studied. One of these barriers, which is of stepped geometry with a curved front face, leads to significantly improved correlation of intrusions in the upper regions of cars with respect to those yielded in the simulation of collisions between incompatible vehicles, together with the yielding of similar vehicle peak decelerations obtained in NCAP tests.
Resumo:
Abstract. In order to estimate the acoustic energy scattered when a unit volume of free turbulence, such as in free jets, interacts with a plane steady sound wave, theoretical expressions are derived for two simple models of turbulence: eddy model and isotropic model. The effect of convection by mean motion of the energy-bearing eddies on the incident sound wave and on the sound generated from wave-turbulence interaction is taken into account. Finally, by means of a representative calculation,the directionality pattern and Mach number dependence of the noise so generated is discussed.
Resumo:
A procedure has been given for minimizing the total output noise of a Generalized Impedance Converter (GIC), subject to constraints dictated by signal handling capability of the Operational Amplifiers and ease of microcircuit fabrication. The noise reduction is achieved only by the adjustment of RC elements of the GIC, and the total output noise after optimization in the example cited is close to the theoretical lower limit. The output noise of a higher-order filter can be reduced by RC-optimizing the individual GIC's of the active realization. Experimental results on a 20–24 kHz channel bank band-pass filter demonstrate the effectiveness of the above procedure.
Resumo:
When the size (L) of a one-dimensional metallic conductor is less than the correlation length λ-1 of the Gaussian random potential, one expects transport properties to show ballistic behaviour. Using an invariant imbedding method, we study the exact distribution of the resistance, of the phase θ of the reflection amplitude of an incident electron of wave number k0, and of dθ/dk0, for λL ll 1. The resistance is non-self-averaging and the n-th resistance moment varies periodically as (1 - cos 2k0L)n. The charge fluctuation noise, determined by the distribution of dθ/dk0, is constant at low frequencies.
Resumo:
Using the recently developed model predictive static programming (MPSP) technique, a nonlinear suboptimal reentry guidance scheme is presented in this paper for a reusable launch vehicle (RLV). Unlike traditional RLV guidance, the problem considered over here is restricted only to pitch plane maneuver of the vehicle, which allows simpler mission planning and vehicle load management. The computationally efficient MPSP technique brings in the philosophy of trajectory optimization into the framework of guidance design, which in turn results in very effective guidance schemes in general. In the problem addressed in this paper, it successfully guides the RLV through the critical reentry phase both by constraining it to the allowable narrow flight corridor as well as by meeting the terminal constraints at the end of the reentry segment. The guidance design is validated by considering possible aerodynamic uncertainties as well as dispersions in the initial conditions. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
An expression for the spectrum and cross spectrum of an acoustic field measured at two vertically separated sensors in shallow water has been obtained for any correlated noise sources distributed over the surface. Numerical results are presented for the case where the noise sources, white noise and wind-induced colored noise, are contained within a circular disk centered over the sensors. The acoustic field is generally inhomogeneous except when the channel is deep. The coherence function becomes real for a large disk, for a radius greater than 25 times the depth of the channel, decreases with further increase of the size of the disk, and finally tapers off after certain limiting size, approximately given by 1/alpha, where alpha is the attenuation coefficient.
Analytical prediction of break-out noise from a reactive rectangular plenum with four flexible walls
Resumo:
This paper describes an analytical calculation of break-out noise from a rectangular plenum with four flexible walls by incorporating three-dimensional effects along with the acoustical and structural wave coupling phenomena. The breakout noise from rectangular plenums is important and the coupling between acoustic waves within the plenum and structural waves in the flexible plenum walls plays a critical role in prediction of the transverse transmission loss. The first step in breakout noise prediction is to calculate the inside plenum pressure field and the normal flexible plenum wall vibration by using an impedance-mobility approach, which results in a compact matrix formulation. In the impedance-mobility compact matrix (IMCM) approach, it is presumed that the coupled response can be described in terms of finite sets of the uncoupled acoustic subsystem and the structural subsystem. The flexible walls of the plenum are modeled as an unfolded plate to calculate natural frequencies and mode shapes of the uncoupled structural subsystem. The second step is to calculate the radiated sound power from the flexible walls using Kirchhoff-Helmholtz (KH) integral formulation. Analytical results are validated with finite element and boundary element (FEM-BEM) numerical models. (C) 2010 Acoustical Society of America. DOI: 10.1121/1.3463801]
Resumo:
We report a detailed investigation of resistance noise in single layer graphene films on Si/SiO2 substrates obtained by chemical vapor deposition (CVD) on copper foils. We find that noise in these systems to be rather large, and when expressed in the form of phenomenological Hooge equation, it corresponds to Hooge parameter as large as 0.1-0.5. We also find the variation in the noise magnitude with the gate voltage (or carrier density) and temperature to be surprisingly weak, which is also unlike the behavior of noise in other forms of graphene, in particular those from exfoliation. (C) 2010 American Institute of Physics. doi:10.1063/1.3493655]
Resumo:
The response of a rigid rectangular block resting on a rigid foundation and acted upon simultaneously by a horizontal and a vertical random white-noise excitation is considered. In the equation of motion, the energy dissipation is modeled through a viscous damping term. Under the assumption that the body does not topple, the steady-state joint probability density function of the rotation and the rotational velocity is obtained using the Fokker-Planck equation approach. Closed form solution is obtained for a specific combination of system parameters. A more general but approximate solution to the joint probability density function based on the method of equivalent non-linearization is also presented. Further, the problem of overturning of the block is approached in the framework of the diffusion methods for first passage failure studies. The overturning of the block is deemed incipient when the response trajectories in the phase plane cross the separatrix of the conservative unforced system. Expressions for the moments of first passage time are obtained via a series solution to the governing generalized Pontriagin-Vitt equations. Numerical results illustra- tive of the theoretical solutions are presented and their validity is examined through limited amount of digital simulations.
Resumo:
The major contribution of this paper is to introduce load compatibility constraints in the mathematical model for the capacitated vehicle routing problem with pickup and deliveries. The employee transportation problem in the Indian call centers and transportation of hazardous materials provided the motivation for this variation. In this paper we develop a integer programming model for the vehicle routing problem with load compatibility constraints. Specifically two types of load compatability constraints are introduced, namely mutual exclusion and conditional exclusion. The model is demonstrated with an application from the employee transportation problem in the Indian call centers.