189 resultados para Ultrasound-assisted enzymatic hydrolysis
Resumo:
A partially purified sheep liver enzyme that hydrolyzed dinucleotides at the pyrophosphate bond was obtained by solubilizing the 18,000g sediment with n-butanol and fractionating the solubilized enzyme with acetone. The enzyme activity when measured using FAD as substrate, (FAD → FMN + AMP), was optimal at pH 9.7 and temperatures between 30 °–36 ° and at 60 °. The rate of release of FMN with time occurred with an initial lag of 30 sec, a linear increase for 1 min, and a subsequent irregular rate. In the presence of orthophosphate (Pi; 10 μImage ), FMN was released at an uniformly continuous and enhanced rate. 32Pi was not incorporated into the substrate or products. Sodium arsenate counteracted the effects of Pi. The apparent Km and Vmax were 0.133 mImage and 100 units; and 0.133 mImage and 200 units, in the absence and presence of Pi, respectively. The temperature optimum was 42 ° in the presence of Pi.Negative cooperative interactions observed at low concentrations of FAD were abolished by the addition of Pi. The inhibition by AMP was sigmoid and Pi abolished this sigmoidal response. The enzyme hydrolyzed in addition to FAD, NAD+ and NADP+. Nucleoside triphosphates were potent inhibitors of the enzyme activity. The partial inhibition of the enzyme by o-phenanthroline and by p-hydroxymercuribenzoate could be reversed by Fe2+ ions and by reduced glutathione, respectively.
Resumo:
By carrying out the reaction of appropriate metal compounds with Na2S in the presence of a tripodal cholamide-based hydrogel, nanotubes and nanorods of CdS, ZnS and CuS have been obtained. The nanostructures have been characterized by transmission electron microscopy and spectroscopic techniques. Evidence is presented for the assembly of short nanorods to form one-dimensional chains.
Resumo:
Purpose: To assess the effect of ultrasound modulation of near infrared (NIR) light on the quantification of scattering coefficient in tissue-mimicking biological phantoms.Methods: A unique method to estimate the phase of the modulated NIR light making use of only time averaged intensity measurements using a charge coupled device camera is used in this investigation. These experimental measurements from tissue-mimicking biological phantoms are used to estimate the differential pathlength, in turn leading to estimation of optical scattering coefficient. A Monte-Carlo model base numerical estimation of phase in lieu of ultrasound modulation is performed to verify the experimental results. Results: The results indicate that the ultrasound modulation of NIR light enhances the effective scattering coefficient. The observed effective scattering coefficient enhancement in tissue-mimicking viscoelastic phantoms increases with increasing ultrasound drive voltage. The same trend is noticed as the ultrasound modulation frequency approaches the natural vibration frequency of the phantom material. The contrast enhancement is less for the stiffer (larger storage modulus) tissue, mimicking tumor necrotic core, compared to the normal tissue. Conclusions: The ultrasound modulation of the insonified region leads to an increase in the effective number of scattering events experienced by NIR light, increasing the measured phase, causing the enhancement in the effective scattering coefficient. The ultrasound modulation of NIR light could provide better estimation of scattering coefficient. The observed local enhancement of the effective scattering coefficient, in the ultrasound focal region, is validated using both experimental measurements and Monte-Carlo simulations. (C) 2010 American Association of Physicists in Medicine. [DOI: 10.1118/1.3456441]
Resumo:
The study of non-invasive characterization of elastic properties of soft biological tissues has been a focus of active researches since recent years. Light is highly scattered by biological tissues and hence, sophisticated reconstruction algorithms are required to achieve good imaging depth and a reasonable resolution. Ultrasound (US), on the otherhand, is less scattered by soft tissues and it has been in use for imaging in biomedical ultrasound systems. Combination of the contrast sensitivity of light and good localization of ultrasound provides a challenging technique for characterization of thicker tissues deep inside the body non-invasively. The elasticity of the tissues is characterized by studying the response of tissues to mechanical excitation induced by an acoustic radiation force (remotely) using an optical laser. The US modulated optical signals which traverse the tissue are detected by using a CCD camera as detector array and the pixel map formed on the CCD is used to characterize the embedded inhomogeneities. The use of CCD camera improves the signal-noise-ratio (SNR) by averaging the signals from all of the CCD pixels.
Resumo:
We report a method for the deposition of thin films and thick coatings of metal oxides through the liquid medium, involving the micro waveirradiation of a solution of a metal-organic complex in a suitable dielectric solvent. The process is a combination of sol-gel and dip-coating methods, wherein coatings can be obtained on nonconducting and semiconducting substrates, within a few minutes. Thin films of nanostructured ZnO (wurtzite) have been obtained on Si(100), glass and polymer substrates, the nanostructure determined by process parameters The coatings are strongly adherent and uniform over 15 mm x 15 mm, the growth rate similar to 0.25 mu m/min Coatings of nanocrystalline Fe2O3 and Ga2O3 have also been obtained The method is scalable to larger substrates, and is promising as a low temperature technique for coating dielectric substrates, including flexible polymers. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The phosphotriesterase (PTE) activity of a series of binuclear and mononuclear zinc(II) complexes and metallo-beta-lactamase (m beta 1) from Bacillus cereus was studied. The binuclear complex 1, which exhibits good m beta 1 activity, shows poor PTE activity. In contrast,complex 2, a poor mimic of m beta 1, exhibits much higher activity than 1 The replacement of Cl- ligands by OH- is important for the high PTE activity of complex 2 because this complex does not show any catalytic activity in methanol. The natural enzyme m beta 1 from B. cereus is also found to be an inefficient catalyst in the hydrolysis of phosphotriesters. These observations indicate that the binding of beta-lactam substrates at the binuclear zinc(II) center is different from that of phosphotriesters. Furthermore, phosphodiesters, the products from the hydrolysis of triesters, significantly inhibit the PTE activity of m beta 1 and its functional mimics. Although the mononuclear complexes 3 and 4 exhibited significant m beta 1 activity, these complexes are found to be almost inactive in the hydrolysis of phosphotriesters. These observations indicate that the elimination of phosphodiesters from the reaction site is important for the PTE activity of zinc(II) complexes.
Resumo:
The selective hydroxylation of proline residues in nascent procollagen chains by prolyl hydroxylase (EC 1.14.11.2) can be understood in terms of the conformational feature of the -Pro-Gly-segments in linear peptides and globular proteins. The folded beta-turn conformation in such segments appears to be the conformational requirement for proline hydroxylation. The available data on the hydroxylation of native and synthetic substrates of prolyl hydroxylase are explained on the basis of the extent of beta-turn formation in them. Taken in conjunction with the conformational features of the hydroxyproline residue, our results bring out the conformational reason for the posttranslational proline hydroxylation which, it is proposed, leads to the "straightening" of the beta-turn segments into the linear triple-helical conformation.
Resumo:
InN quantum dots (QDs) were fabricated on Si(111) substrate by droplet epitaxy using an RF plasma-assisted MBE system. Variation of the growth parameters, such as growth temperature and deposition time, allowed us to control the characteristic size and density of the QDs. As the growth temperature was increased from 100 C to 300 degrees C, an enlargement of QD size and a drop in dot density were observed, which was led by the limitation of surface diffusion of adatoms with the limited thermal energy. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to assess the QDs size and density. The chemical bonding configurations of InN QDs were examined by X-ray photo-electron spectroscopy (XPS). Fourier transform infrared (FTIR) spectrum of the deposited InN QDs shows the presence of In-N bond. Temperature-dependent photoluminescence (PL) measurements showed that the emission peak energies of the InN QDs are sensitive to temperature and show a strong peak emission at 0.79 eV.
Resumo:
Nanosized hexagonal InN flower-like structures were fabricated by droplet epitaxy on GaN/Si(111) and GaN flower-like nanostructure fabricated directly on Si(111) substrate using radio frequency plasma-assisted molecular beam epitaxy. Powder X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to study the crystallinity and morphology of the nanostructures. Moreover, X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL) were used to investigate the chemical compositions and optical properties of nano-flowers, respectively. Activation energy of free exciton transitions in GaN nano-flowers was derived to be similar to 28.5 meV from the temperature dependent PL studies. The formation process of nano-flowers is investigated and a qualitative mechanism is proposed.
Resumo:
TiO2 (anatase) was synthesized using a microwave-irradiation-assisted chemical method. The reaction conditions were varied to obtain unique nanostructures of TiO2 comprising nanometric spheres giving the materials a very porous morphology. The oxide was characterized by X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA). The specific surface area and porosity were quantified by the BET method, and the degradation of dyes was carried out using these materials. The photocatalytic activity of the nanometric TiO2 was significantly higher than that of commercially available TiO2 (Degussa P25) for the degradation of the dyes.