157 resultados para Ultra-fast
Resumo:
Ultra thin films of pure silicon nitride were grown on a Si (1 1 1) surface by exposing the surface to radio-frequency (RF) nitrogen plasma with a high content of nitrogen atoms. The effect of annealing of silicon nitride surface was investigated with core-level photoelectron spectroscopy. The Si 2p photoelectron spectra reveals a characteristic series of components for the Si species, not only in stoichiometric Si3N4 (Si4+) but also in the intermediate nitridation states with one (Si1+) or three (Si3+) nitrogen nearest neighbors. The Si 2p core-level shifts for the Si1+, Si3+, and Si4+ components are determined to be 0.64, 2.20, and 3.05 eV, respectively. In annealed sample it has been observed that the Si4+ component in the Si 2p spectra is significantly improved, which clearly indicates the crystalline nature of silicon nitride. The high resolution X-ray diffraction (HRXRD), scanning electron microscopy (SEM) and photoluminescence (PL) studies showed a significant improvement of the crystalline qualities and enhancement of the optical properties of GaN grown on the stoichiometric Si3N4 by molecular beam epitaxy (MBE). (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The microstructure, thermal stability and hardness of ultra-fine grained (UFG) Ni produced by 12 passes of equal channel angular pressing (ECAP) through the route Bc were studied. Comparing the microstructure and hardness of the as-ECAPed samples with the published data on UFG Ni obtained after 8 passes of ECAP through the route Bc reveals a smaller average grain size (230 nm in the present case compared with 270 nm in 8-pass Ni), significantly lower dislocation density (1.08 x 10(14) m(-2) compared with 9 x 10(14) m(-2) in 8-pass Ni) and lower hardness (2 GPa compared with 2.45 GPa for 8-pass Ni). Study of the thermal stability of the 12-pass UFG Ni revealed that recovery is dominant in the temperature range 150-250A degrees C and recrystallisation occurred at temperatures > 250 A degrees C. The UFG microstructure is relatively stable up to about 400 A degrees C. Due to the lower dislocation density and consequently a lower stored energy, the recrystallisation of 12-pass ECAP Ni occurred at a higher temperature (similar to 250 A degrees C) compared with the 8-pass Ni (similar to 200 A degrees C). In the 12-pass Nickel, hardness variation shows that its dependence on grain size is inversely linear rather than the common grain size(-0.5) dependence.
Resumo:
In this paper a pipelined ring algorithm is presented for efficient computation of one and two dimensional Fast Fourier Transform (FFT) on a message passing multiprocessor. The algorithm has been implemented on a transputer based system and experiments reveal that the algorithm is very efficient. A model for analysing the performance of the algorithm is developed from its computation-communication characteristics. Expressions for execution time, speedup and efficiency are obtained and these expressions are validated with experimental results obtained on a four transputer system. The analytical model is then used to estimate the performance of the algorithm for different number of processors, and for different sizes of the input data.
Resumo:
This paper presents a fast algorithm for data exchange in a network of processors organized as a reconfigurable tree structure. For a given data exchange table, the algorithm generates a sequence of tree configurations in which the data exchanges are to be executed. A significant feature of the algorithm is that each exchange is executed in a tree configuration in which the source and destination nodes are adjacent to each other. It has been proved in a theorem that for every pair of nodes in the reconfigurable tree structure, there always exists two and only two configurations in which these two nodes are adjacent to each other. The algorithm utilizes this fact and determines the solution so as to optimize both the number of configurations required and the time to perform the data exchanges. Analysis of the algorithm shows that it has linear time complexity, and provides a large reduction in run-time as compared to a previously proposed algorithm. This is well-confirmed from the experimental results obtained by executing a large number of randomly-generated data exchange tables. Another significant feature of the algorithm is that the bit-size of the routing information code is always two bits, irrespective of the number of nodes in the tree. This not only increases the speed of the algorithm but also results in simpler hardware inside each node.
Resumo:
This paper presents recursive algorithms for fast computation of Legendre and Zernike moments of a grey-level image intensity distribution. For a binary image, a contour integration method is developed for the evaluation of Legendre moments using only the boundary information. A method for recursive calculation of Zernike polynomial coefficients is also given. A square-to-circular image transformation scheme is introduced to minimize the computation involved in Zernike moment functions. The recursive formulae can also be used in inverse moment transforms to reconstruct the original image from moments. The mathematical framework of the algorithms is given in detail, and illustrated with binary and grey-level images.
Resumo:
A new polymer electrolyte (PEG)(x) NH4ClO4(x = 5, 10, 15, 20) has been prepared that shows protonic conduction. The room temperature conductivities are of the order of 10(-7) S/cm, and increase with decrease in salt concentration. NMR line width studies indicate fairly low glass transition temperatures of the polymer salt complexes.
Resumo:
The field of ultrafast chemistry has seen a string of remarkable discoveries in the recent years. In this article we briefly discuss some of the problems solved recently. The understanding that has emerged from these studies has important consequences non only in chemistry but also in diverse biological processes.
Resumo:
Ultra low-load-dynamic microhardness testing facilitates the hardness measurements in a very low volume of the material and thus is suited for characterization of the interfaces in MMC's. This paper details the studies on age-hardening behavior of the interfaces in Al-Cu-5SiC(p) composites characterized using this technique. Results of hardness studies have been further substantiated by TEM observations. In the solution-treated condition, hardness is maximum at the particle/matrix interface and decreases with increasing distance from the interface. This could be attributed to the presence of maximum dislocation density at the interface which decreases with increasing distance from the interface. In the case of composites subjected to high temperature aging, hardening at the interface is found to be faster than the bulk matrix and the aging kinetics becomes progressively slower with increasing distance from the interface. This is attributed to the dislocation density gradient at the interface, leading to enhanced nucleation and growth of precipitates at the interface compared to the bulk matrix. TEM observations reveal that the sizes of the precipitates decrease with increasing distance from the interface and thus confirms the retardation in aging kinetics with increasing distance from the interface.
Resumo:
In this paper we construct low decoding complexity STBCs by using the Pauli matrices as linear dispersion matrices. In this case the Hurwitz-Radon orthogonality condition is shown to be easily checked by transferring the problem to $\mathbb{F}_4$ domain. The problem of constructing low decoding complexity STBCs is shown to be equivalent to finding certain codes over $\mathbb{F}_4$. It is shown that almost all known low complexity STBCs can be obtained by this approach. New codes are given that have the least known decoding complexity in particular ranges of rate.
Resumo:
Due to its wide applicability, semi-supervised learning is an attractive method for using unlabeled data in classification. In this work, we present a semi-supervised support vector classifier that is designed using quasi-Newton method for nonsmooth convex functions. The proposed algorithm is suitable in dealing with very large number of examples and features. Numerical experiments on various benchmark datasets showed that the proposed algorithm is fast and gives improved generalization performance over the existing methods. Further, a non-linear semi-supervised SVM has been proposed based on a multiple label switching scheme. This non-linear semi-supervised SVM is found to converge faster and it is found to improve generalization performance on several benchmark datasets. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The variation of resistivity of the lithium fast-ion conductor Li3+y Ge1−yO4 (y = 0.25, 0.6, 0.72) has been studied with hydrostatic pressure up to 70 kbar and compared with that of Li16−2x Znx (GeO4)4(x = 1, 2). Both types showed pronounced resistivity maxima between 20–30 kbar and marked decrease thereafter. Measurements as a function of temperature between 120–300 K permitted the determination of activation energies and prefactors that also showed corresponding maxima. The activation volumes (ΔV) of the first type of compound varied between 4.34 to −4.90 cm3/mol at 300 K and decreased monotonically with increasing temperature. For the second type ΔV was much smaller, varied with pressure between 0.58 and −0.24 cm3/mol, and went through a maximum with increasing temperature. High-pressure studies were also conducted on aged samples, and the results are discussed in conjunction with results of impedance measurements and nuclear magnetic resonance (NMR) studies. The principal effect of pressure appears to be variations of the sum of interatomic potentials and hence barrier height, which also causes significant changes in entropy.
Resumo:
Fly ash and silica fume are two pozzolans that have been widely used for improved concrete strength and durability. Silica fume displays a greater pozzolanic reactivity than fly ash primarily due to its finer particle size. The reactivity of fly ash can be improved by reducing its particle size distribution. This paper discusses the fresh and hardened properties of concrete made with an ultra-fine fly ash (UFFA) produced by air classification. Durability testing for chloride diffusivity, rapid chloride permeability, alkali-silica reaction (ASR), and sulfate attack was also conducted It was found that at a given workability and water content, concrete containing UFFA could be produced with only 50% of the high-range water-reducer dosage required for comparable silica fume concrete. Similar early strengths and durability measures as silica fume concrete were observed when a slightly higher dosage of UFFA was used with a small reduction (10%) in water content.
Resumo:
We propose a method to encode a 3D magnetic resonance image data and a decoder in such way that fast access to any 2D image is possible by decoding only the corresponding information from each subband image and thus provides minimum decoding time. This will be of immense use for medical community, because most of the PET and MRI data are volumetric data. Preprocessing is carried out at every level before wavelet transformation, to enable easier identification of coefficients from each subband image. Inclusion of special characters in the bit stream facilitates access to corresponding information from the encoded data. Results are taken by performing Daub4 along x (row), y (column) direction and Haar along z (slice) direction. Comparable results are achieved with the existing technique. In addition to that decoding time is reduced by 1.98 times. Arithmetic coding is used to encode corresponding information independently