180 resultados para Two-soliton resonances
Resumo:
The structure and dynamics of the two-dimensional linear shear flow of inelastic disks at high area fractions are analyzed. The event-driven simulation technique is used in the hard-particle limit, where the particles interact through instantaneous collisions. The structure (relative arrangement of particles) is analyzed using the bond-orientational order parameter. It is found that the shear flow reduces the order in the system, and the order parameter in a shear flow is lower than that in a collection of elastic hard disks at equilibrium. The distribution of relative velocities between colliding particles is analyzed. The relative velocity distribution undergoes a transition from a Gaussian distribution for nearly elastic particles, to an exponential distribution at low coefficients of restitution. However, the single-particle distribution function is close to a Gaussian in the dense limit, indicating that correlations between colliding particles have a strong influence on the relative velocity distribution. This results in a much lower dissipation rate than that predicted using the molecular chaos assumption, where the velocities of colliding particles are considered to be uncorrelated.
Resumo:
Antipyrine is a well known ligand for lanthanides (I). A forage through the organic literature of pyrazolones reveals that the 4-position of antipyrine is amenable to a wide variety of organic reactions. It should thus be possible to introduce suitable functional groups at this position and design new multidentate ligands for metal ions. It is also found that the coordination chemistry of lanthanides is much less well developed and far fewer ligands have been used for complexation with lanthanide ions compared to that of the d-transition metal ions. Keeping these points in view we have reported earlier, complexes of lanthanides with a bidentate ligand N,N-diethyl-antipyrine-4-carboxamide (2). In this communication we report the synthesis of two new ligands from Schiff base condensation of antipyraldehyde and the hydrazides of acetic and benzoic acids and the complexes formed by these hydrazones with lanthanide perchlorates.
Resumo:
Pseudotwo-dimensional wakes are generated by introducing spanwise cellular structures into an otherwise plane turbulent wake by means of the castellated blunt trailing edges of different configurations. The transverse growths of these coflowing cellular wakes are found to be independent of each other without any noticeable spanwise interaction. This wake growth is examined in the light of the plane equilibrium wake analysis. Though these wakes are not found to be exactly self-similar, their growth shows a nonmonotonous approach toward the asymptotic state appropriate to that of a plane wake. The dye emission in the wakes illustrated a coherent vortical structure in the transverse plane, similar to that of the usual two-dimensional wake, in spite of the initial spanwise irregularities.
Resumo:
Some subtleties regarding regularizations in computing the soliton energy of degenerate systems are discussed.
Resumo:
We report experimental observation of an unexpectedly large thermopower in mesoscopic two-dimensional (2D) electron systems in GaAs/AlGaA heterostructures at sub-Kelvin temperatures and zero magnetic field. Unlike conventional nonmagnetic high-mobility 2D systems, the thermopower in our devices increases with decreasing temperature below 0.3 K, reaching values in excess of 100 mu V/K, thus exceeding the free electron estimate by more than 2 orders of magnitude. With support from a parallel study of the local density of states, we suggest such a phenomenon to be linked to intrinsic localized states and many-body spin correlations in the system.
Resumo:
A general theory is evolved for a class of macrogrowth models which possess two independent growth-rates. Relations connecting growth-rates to growth geometry are established and some new growth forms are shown to result for models with passivation or diffusion-controlled rates. The corresponding potentiostatic responses, their small and large time behaviours and peak characteristics are obtained. Numerical transients are also presented. An empirical equation is derived as a special case and an earlier equation is corrected. An interesting stochastic result pertaining to nucleation events in the successive layers is proved.
Resumo:
A formulation has been developed using perturbation theory to evaluate the π-contribution to the nuclear spin coupling constants involving nuclei at least one of which is an unsaturated center. This fromulation accounts for the π-contribution in terms of the core polarization and one-center exchange at the π-center. The formulation developed together with the Dirac vector model and Penney-Dirac bond-order formalisms was employed to calculate the geminal (two-bond) proton coupling constants of carboxyl carbons in α-disubstituted acetic acids. The calculated coupling constants were found to have an orientational dependence. The results of the calculation are in good agreement with the experimental values.
Resumo:
An engineering analysis of the design of two-wheel bullock carts has been carried out with the aid of a mathematical model. Non-dimensional expressions for the pull and the neck load have been developed. In the first instance, the cart is assumed to be cruising at constant velocity on a terrain with the effective coefficient of rolling friction varying over a wide range (0.001 to 0.5) and the gradient varying between +0.2 to −0.2. Subsequently, the effect of inertia force due to an acceleration parallel to the ground is studied. In the light of this analysis, two modifications to the design of the cart have been proposed and the relative merits of the current designs and the proposed designs are discussed.
Resumo:
The stress problem of two equal circular elastic inclusions in a pressurised cylindrical shell has been solved by using single inclusion solutions together with Graf’s addition theorem. The effect of the inter-inclusion distance on the interface stresses in the shell as well as in the inclusion is studied. The results obtained for small values of curvature parameter fi @*=(a*/8Rt) [12(1-v*)]“*, a, R, t being inclusion radius and shell radius and thickness) when compared with the flat-plate results show good agreement. The results obtained in non-dimensional form are presented graphically.
Resumo:
analysis of a complex physical problem and the close agreement they achieved with observations. However, the following points need to be clarified. First of all the authors assume that during the initial phases of expansion, the Tayior's instability sets in due to the acceleraacceleration of lighter fluid against the more dense cold water.
Resumo:
Abstract is not available.
Resumo:
The scalar coupled proton NMR spectra of many organic molecules possessing more than one phenyl ring are generally complex due to degeneracy of transitions arising from the closely resonating protons, in addition to several short- and long- range couplings experienced by each proton. Analogous situations are generally encountered in derivatives of halogenated benzanilides. Extraction of information from such spectra is challenging and demands the differentiation of spectrum pertaining to each phenyl ring and the simplification of their spectral complexity. The present study employs the blend of independent spin system filtering and the spin-state selective detection of single quantum (SO) transitions by the two-dimensional multiple quantum (MQ) methodology in achieving this goal. The precise values of the scalar couplings of very small magnitudes have been derived by double quantum resolved experiments. The experiments also provide the relative signs of heteronuclear couplings. Studies on four isomers of dilhalogenated benzanilides are reported in this work.
Resumo:
We present results of a study of the two-impurity Anderson model using a thermodynamic scaling theory developed recently. The model is characterized by the Coulomb energy U, the orbital energy epsilond, the d-level width Gamma, and the separation between impurities R. If Gamma<<−epsilond<~Gamma. Here we find that the single-impurity physics dominates the low-temperature behavior, and impurity-impurity interactions are perturbative. The qualitative features of the temperature-dependent susceptibility are discussed. Journal of Applied Physics is copyrighted by The American Institute of Physics.
Resumo:
A method is developed for demonstrating how solitons with some internal periodic motion may emerge as elementary excitations in the statistical mechanics of field systems. The procedure is demonstrated in the context of complex scalar fields which can, for appropriate choices of the Lagrangian, yield charge-carrying solitons with such internal motion. The derivation uses the techniques of the steepest-descent method for functional integrals. It is shown that, despite the constraint of some fixed total charge, a gaslike excitation of such charged solitons does emerge.