137 resultados para Tomato severe rugose virus
Resumo:
The copper complex of the antituberculous drug, isonicotinic acid hydrazide (INH), inhibits the RNA-dependent DNA polymerase of Rous sarcoma virus and inactivates its ability to malignantly transform chick embryo cells. The INH-copper complex binds to the 70S genome RNA of Rous sarcoma virus (RSV), which may account for its ability to inhibit the RNA-dependent DNA polymerase. The complex binds RNA more effectively than DNA in contrast to M-IBT-copper complexes, which bind both types of nucleic acids equally. The homopolymers, poly rA and poly rU, are bound by the INH-copper complex to a greater extent than poly rC. Isonicotinic acid hydrazide alone and CuSO4 alone bind neither DNA, RNA, poly (rA), poly (rU), nor poly (rC). However, CuSO4 alone binds poly (rI); INH alone does not. In addition to viral DNA synthesis, chick-embryo cell DNA synthesis is inhibited by the INH-copper complex. The extent of inhibition of cellular DNA synthesis is greater than that of cellular RNA and protein synthesis. No selective inhibition of transformation in cells previously infected with Rous sarcoma virus is observed.
Resumo:
Background: Dengue virus along with the other members of the flaviviridae family has reemerged as deadly human pathogens. Understanding the mechanistic details of these infections can be highly rewarding in developing effective antivirals. During maturation of the virus inside the host cell, the coat proteins E and M undergo conformational changes, altering the morphology of the viral coat. However, due to low resolution nature of the available 3-D structures of viral assemblies, the atomic details of these changes are still elusive. Results: In the present analysis, starting from C alpha positions of low resolution cryo electron microscopic structures the residue level details of protein-protein interaction interfaces of dengue virus coat proteins have been predicted. By comparing the preexisting structures of virus in different phases of life cycle, the changes taking place in these predicted protein-protein interaction interfaces were followed as a function of maturation process of the virus. Besides changing the current notion about the presence of only homodimers in the mature viral coat, the present analysis indicated presence of a proline-rich motif at the protein-protein interaction interface of the coat protein. Investigating the conservation status of these seemingly functionally crucial residues across other members of flaviviridae family enabled dissecting common mechanisms used for infections by these viruses. Conclusions: Thus, using computational approach the present analysis has provided better insights into the preexisting low resolution structures of virus assemblies, the findings of which can be made use of in designing effective antivirals against these deadly human pathogens.
Resumo:
Severe plastic deformation techniques are known to produce grain sizes up to submicron level. This leads to conventional Hall-Petch strengthening of the as-processed materials. In addition, the microstructures of severe plastic deformation processed materials are characterized by relatively lower dislocation density compared to the conventionally processed materials subjected to the same amount of strain. These two aspects taken together lead to many important attributes. Some examples are ultra-high yield and fracture strengths, superplastic formability at lower temperatures and higher strain rates, superior wear resistance, improved high cycle fatigue life. Since these processes are associated with large amount of strain, depending on the strain path, characteristic crystallographic textures develop. In the present paper, a detailed account of underlying mechanisms during SPD has been discussed and processing-microstructure-texture-property relationship has been presented with reference to a few varieties of steels that have been investigated till date.
Resumo:
Digoxigenin (DIG)-labeled DNA probe was developed for a sensitive and rapid detection of the Tobacco streak virus (TSV) isolates in India by dot-blot and tissue print hybridization techniques. DIG-labeled DNA probe complementary to the coat protein (CP) region of TSV sunflower isolate was designed and used to detect the TSV presence at field levels. Dot-blot hybridization was used to check a large number of TSV isolates with a single probe. In addition, a sensitivity of the technique was examined with the different sample extraction methods. Another technique, the tissue blot hybridization offered a simple, reliable procedure and did not require a sample processing. Thus, both non-radioactively labeled probe techniques could facilitate the sample screening during TSV outbreaks and offer an advantage in quarantine services.
Resumo:
In vitro translation of belladonna mottle virus BDMV(I) genomic RNA in a rabbit reticulocyte lysate system produced proteins of Mr 210,000, 150,000 and 78,000 which form the non-structural proteins. The coat protein, on the other hand, was expressed from a subgenomic RNA which was found to be encapsidated in the empty capsids forming the top component viral particles. The implications of subgenomic RNA encapsidation in viral replication and assembly are discussed.
Resumo:
The 3' terminal 1255 nt sequence of Physalis mottle virus (PhMV) genomic RNA has been determined from a set of overlapping cDNA clones. The open reading frame (ORF) at the 3' terminus corresponds to the amino acid sequence of the coat protein (CP) determined earlier except for the absence of the dipeptide, Lys-Leu, at position 110-111. In addiition, the sequence upstream of the CP gene contains the message coding for 178 amino acid residues of the C-terminus of the putative replicase protein (RP). The sequence downstream of the CP gene contains an untranslated region whose terminal 80 nucleotides can be folded into a characteristic tRNA-like structure. A phylogenetic tree constructed after aligning separately the sequence of the CP, the replicase protein (RP) and the tRNA-like structure determined in this study with the corresponding sequences of other tymoviruses shows that PhMV wrongly named belladonna mottle virus [BDMV(I)] is a separate tymovirus and not another strain of BDMV(E) as originally envisaged. The phylogenetic tree in all the three cases is identical showing that any subset of genomic sequence of sufficient length can be used for establishing evolutionary relationships among tymoviruses.
Resumo:
A 0.9 kb double stranded cDNA of foot and mouth disease virus (FMDV) Type Asia 1, 63/72 was cloned in an expression vector, pUR222. A protein of 38 kd was produced by the clone which reacted with the antibodies raised against the virus. A 20 kd protein which may be derived from the 38 kd protein contained the antigenic epitopes of the protein VP1 of the virus. Injection of 10-20 micrograms of the partially purified 38 and 20 kd proteins or a lysate of cells containing 240 micrograms of the proteins elicited high titers of FMDV specific antibodies in guinea pigs and cattle respectively. Also, at these concentrations, the proteins protected 5 of 8 guinea pigs and 3 of 8 cattle when challenged with a virulent virus.
Resumo:
Polyclonal antibodies were raised against the Physalis mottle virus (PhMV) and its denatured coat protein (PhMV-P). Analysis of the reactivity of the polyclonal antibodies with tryptic peptides of PhMV-P in dot-blot assays revealed that many of the epitopes were common to intact virus and denatured coat protein. Five monoclonal antibodies to the intact virus were obtained using hybridoma technology. These monoclonal antibodies reacted well with the denatured coat protein. Epitope analysis suggested that probably these monoclonal antibodies recognize overlapping epitopes. This was substantiated by epitope mapping using the CNBr digest of PhMV-P in western blots. All the five monoclonals recognized the N-terminal 15 K fragment. Attempts to further delineate the specific region recognized by the monoclonals by various enzymatic cleavages resulted in the loss of reactivity in all the cases. The results indicate that these monoclonals probably recognize epitopes within the N-terminal 15 K fragment of the coat protein.