54 resultados para Ticks - Immunization of hosts
Resumo:
Despite being a particularly good emitter, use of divalent Eu has been seriously limited. This is because severe reducing environments or special hosts are needed during synthesis of divalent Eu containing phosphors. In this work we stabilize Eu in its 2+ state (in CaAl2O4) using an open-air solution combustion reaction. The impact of fuel (F) to oxidizer (O) molar ratios (F/O = 0.5-2.0) on luminescence properties is explored. Chromaticity of Eu:CaAl2O4 depends sensitively on the F/O ratio. In general, higher F/O inhibits Eu3+ and promotes Eu2+ formation, which in turn improves the quality of the blue phosphor. EPR spectra show inhomogeneous broadening effects with the increase in F/O ratio, which suggests that disorder creation is promoted when F/O is increase. This is also confirmed by an increase in emission line width in PL spectra, when F/O is increased. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
We previously reported interferon gamma secretion by human CD4(+) and CD8(+) T cells in response to recombinant E. coli-expressed Rv1860 protein of Mycobacterium tuberculosis (MTB) as well as protection of guinea pigs against a challenge with virulent MTB following prime-boost immunization with DNA vaccine and poxvirus expressing Rv1860. In contrast, a Statens Serum Institute Mycobacterium bovis BCG (BCG-SSI) recombinant expressing MTB Rv1860 (BCG-TB1860) showed loss of protective ability compared to the parent BCG strain expressing the control GFP protein (BCG-GFP). Since Rv1860 is a secreted mannosylated protein of MTB and BCG, we investigated the effect of BCG-TB1860 on innate immunity. Relative to BCG-GFP, BCG-TB1860 effected a significant near total reduction both in secretion of cytokines IL-2, IL-12p40, IL-12p70, TNF-alpha, IL-6 and IL-10, and up regulation of co-stimulatory molecules MHC-II, CD40, CD54, CD80 and CD86 by infected bone marrow derived dendritic cells (BMDC), while leaving secreted levels of TGF-beta unchanged. These effects were mimicked by BCG-TB1860His which carried a 6-Histidine tag at the C-terminus of Rv1860, killed sonicated preparations of BCG-TB1860 and purified H37Rv-derived Rv1860 glycoprotein added to BCG-GFP, but not by E. coli-expressed recombinant Rv1860. Most importantly, BMDC exposed to BCG-TB1860 failed to polarize allogeneic as well as syngeneic T cells to secrete IFN-gamma and IL-17 relative to BCG-GFP. Splenocytes from mice infected with BCG-SSI showed significantly less proliferation and secretion of IL-2, IFN-gamma and IL-17, but secreted higher levels of IL-10 in response to in vitro restimulation with BCG-TB1860 compared to BCG-GFP. Spleens from mice infected with BCG-TB1860 also harboured significantly fewer DC expressing MHC-II, IL-12, IL-2 and TNF-alpha compared to mice infected with BCG-GFP. Glycoproteins of MTB, through their deleterious effects on DC may thus contribute to suppress the generation of a TH1- and TH17-dominated adaptive immune response that is vital for protection against tuberculosis.
Resumo:
T-protein, an aminomethyltransferase, represents one of the four components of glycine cleavage system (GCS) and catalyzes the transfer of methylene group from H-protein intermediate to tetrahydrofolate (THF) forming N-5, N-10-methylene THF (CH2-THF) with the release of ammonia. The malaria parasite genome encodes T-, H- and L-proteins, but not P-protein which is a glycine decarboxylase generating the aminomethylene group. A putative GCS has been considered to be functional in the parasite mitochondrion despite the absence of a detectable P-protein homologue. In the present study, the mitochondrial localization of T-protein in the malaria parasite was confirmed by immunofluorescence and its essentiality in the entire parasite life cycle was studied by targeting the T-protein locus in Plasmodium berghei (Pb). PbT knock out parasites did not show any growth defect in asexual, sexual and liver stages indicating that the T-protein is dispensable for parasite survival in vertebrate and invertebrate hosts. The absence of P-protein homologue and the non-essentiality of T protein suggest the possible redundancy of GCS activity in the malaria parasite. Nevertheless, the H- and L-proteins of GCS could be essential for malaria parasite because of their involvement in alpha-lcetoacid dehydrogenase reactions. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Elettra is one of the first 3rd-generation storage rings, recently upgraded to routinely operate in top-up mode at both 2.0 and 2.4 GeV. The facility hosts four dedicated beamlines for crystallography, two open to the users and two under construction, and expected to be ready for public use in 2015. In service since 1994, XRD1 is a general-purpose diffraction beamline. The light source for this wide (4-21 keV) energy range beamline is a permanent magnet wiggler. XRD1 covers experiments ranging from grazing incidence X-ray diffraction to macromolecular crystallography, from industrial applications of powder diffraction to X-ray phasing with long wavelengths. The bending magnet powder diffraction beamline MCX has been open to users since 2009, with a focus on microstructural investigations and studies under non-ambient conditions. A superconducting wiggler delivers a high photon flux to a new fully automated beamline dedicated to macromolecular crystallography and to a branch beamline hosting a high-pressure powder X-ray diffraction station (both currently under construction). Users of the latter experimental station will have access to a specialized sample preparation laboratory, shared with the SISSI infrared beamline. A high throughput crystallization platform equipped with an imaging system for the remote viewing, evaluation and scoring of the macromolecular crystallization experiments has also been established and is open to the user community.
Resumo:
Helicobacter pylori, a human pathogen, is a naturally and constitutively competent bacteria, displaying a high rate of intergenomic recombination. While recombination events are essential for evolution and adaptation of H.pylori to dynamic gastric niches and new hosts, such events should be regulated tightly to maintain genomic integrity. Here, we analyze the role of the nuclease activity of MutS2, a protein that limits recombination during transformation in H.pylori. In previously studied MutS2 proteins, the C-terminal Smr domain was mapped as the region responsible for its nuclease activity. We report here that deletion of Smr domain does not completely abolish the nuclease activity of HpMutS2. Using bioinformatics analysis and mutagenesis, we identified an additional and novel nuclease motif (LDLK) at the N-terminus of HpMutS2 unique to Helicobacter and related epsilon-proteobacterial species. A single point mutation (D30A) in the LDLK motif and the deletion of Smr domain resulted in approximate to 5-10-fold loss of DNA cleavage ability of HpMutS2. Interestingly, the mutant forms of HpMutS2 wherein the LDLK motif was mutated or the Smr domain was deleted were unable to complement the hyper-recombination phenotype of a mutS2(-) strain, suggesting that both nuclease sites are indispensable for an efficient anti-recombinase activity of HpMutS2.
Resumo:
1. Host-parasite interactions have the potential to influence broadscale ecological and evolutionary processes, levels of endemism, divergence patterns and distributions in host populations. Understanding the mechanisms involved requires identification of the factors that shape parasite distribution and prevalence. 2. A lack of comparative information on community-level host-parasite associations limits our understanding of the role of parasites in host population divergence processes. Avian malaria (haemosporidian) parasites in bird communities offer a tractable model system to examine the potential for pathogens to influence evolutionary processes in natural host populations. 3. Using cytochrome b variation, we characterized phylogenetic diversity and prevalence of two genera of avian haemosporidian parasites, Plasmodium and Haemoproteus, and analysed biogeographic patterns of lineages across islands and avian hosts, in southern Melanesian bird communities to identify factors that explain patterns of infection. 4. Plasmodium spp. displayed isolation-by-distance effects, a significant amount of genetic variation distributed among islands but insignificant amounts among host species and families, and strong local island effects with respect to prevalence. Haemoproteus spp. did not display isolation-by-distance patterns, showed marked structuring of genetic variation among avian host species and families, and significant host species prevalence patterns. 5. These differences suggest that Plasmodium spp. infection patterns were shaped by geography and the abiotic environment, whereas Haemoproteus spp. infection patterns were shaped predominantly by host associations. Heterogeneity in the complement and prevalence of parasite lineages infecting local bird communities likely exposes host species to a mosaic of spatially divergent disease selection pressures across their naturally fragmented distributions in southern Melanesia. Host associations for Haemoproteus spp. indicate a capacity for the formation of locally co-adapted host-parasite relationships, a feature that may limit intraspecific gene flow or range expansions of closely related host species.
Resumo:
We study graphene, which has both spin-orbit coupling (SOC), taken to be of the Kane-Mele form, and a Zeeman field induced due to proximity to a ferromagnetic material. We show that a zigzag interface of graphene having SOC with its pristine counterpart hosts robust chiral edge modes in spite of the gapless nature of the pristine graphene; such modes do not occur for armchair interfaces. Next we study the change in the local density of states (LDOS) due to the presence of an impurity in graphene with SOC and Zeeman field, and demonstrate that the Fourier transform of the LDOS close to the Dirac points can act as a measure of the strength of the spin-orbit coupling; in addition, for a specific distribution of impurity atoms, the LDOS is controlled by a destructive interference effect of graphene electrons which is a direct consequence of their Dirac nature. Finally, we study transport across junctions, which separates spin-orbit coupled graphene with Kane-Mele and Rashba terms from pristine graphene both in the presence and absence of a Zeeman field. We demonstrate that such junctions are generally spin active, namely, they can rotate the spin so that an incident electron that is spin polarized along some direction has a finite probability of being transmitted with the opposite spin. This leads to a finite, electrically controllable, spin current in such graphene junctions. We discuss possible experiments that can probe our theoretical predictions.
Resumo:
Following transmission, HIV-1 adapts in the new host by acquiring mutations that allow it to escape from the host immune response at multiple epitopes. It also reverts mutations associated with epitopes targeted in the transmitting host but not in the new host. Moreover, escape mutations are often associated with additional compensatory mutations that partially recover fitness costs. It is unclear whether recombination expedites this process of multi-locus adaptation. To elucidate the role of recombination, we constructed a detailed population dynamics model that integrates viral dynamics, host immune response at multiple epitopes through cytotoxic T lymphocytes, and viral evolution driven by mutation, recombination, and selection. Using this model, we compute the expected waiting time until the emergence of the strain that has gained escape and compensatory mutations against the new host's immune response, and reverted these mutations at epitopes no longer targeted. We find that depending on the underlying fitness landscape, shaped by both costs and benefits of mutations, adaptation proceeds via distinct dominant pathways with different effects of recombination, in particular distinguishing escape and reversion. When adaptation at a single epitope is involved, recombination can substantially accelerate immune escape but minimally affects reversion. When multiple epitopes are involved, recombination can accelerate or inhibit adaptation depending on the fitness landscape. Specifically, recombination tends to delay adaptation when a purely uphill fitness landscape is accessible at each epitope, and accelerate it when a fitness valley is associated with each epitope. Our study points to the importance of recombination in shaping the adaptation of HIV-1 following its transmission to new hosts, a process central to T cell-based vaccine strategies. (C) 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license.
Resumo:
An experimental investigation of the stabilization of the turquoise-colored chrornophore (Mn5+O4) in various oxide hosts, viz., A(3)(VO4)(2) (A = Ba, Sr, Ca), YVO4, and Ba2MO4 (M = Ti, Si), has been carried out. The results reveal that substitution of Mn5+O4 occurs in Ba-3(VO4)(2) forming the entire solid solution series Ba-3(V1-x MnxO4)(2) (0 < x <= 1.0), while with the corresponding strontium derivative, only up to about 10% of Mn5+O4 substitution is possible. Ca-3(VO4)(2) and YVO4 do not stabilize Mn5+O4 at all. With Ba2MO4 (M = Ti, Si), we could prepare only partially substituted materials, Ba2M1-xMn5+O4+x/2 for x up to 0.15, that are turquoise-colored. We rationalize the results that a large stabilization of the O 2p-valence band states occurs in the presence of the electropositive barium that renders the Mn5+ oxidation state accessible in oxoanion compounds containing PO43-, VO43-, etc. By way of proof-of-concept, we synthesized new turquoise-colored Mn5+O4 materials, Ba-5(BO3)(MnO4)(2)Cl and Ba-5(BO3)(PO4)(MnO4)Cl, based on the apatite-Ba-5(PO4)(3)Cl-structure.