203 resultados para Temporal acoustic window
Resumo:
Acoustic emission (AE) energy, instead of amplitude, associated with each of the event is used to estimate the fracture process zone (FPZ) size. A steep increase in the cumulative AE energy of the events with respect to time is correlated with the formation of FPZ. Based on the AE energy released during these events and the locations of the events, FPZ size is obtained. The size-independent fracture energy is computed using the expressions given in the boundary effect model by least squares method since over-determined system of equations are obtained when data from several specimens are used. Instead of least squares method a different method is suggested in which the transition ligament length, measured from the plot of histograms of AE events plotted over the un-cracked ligament, is used directly to obtain size-independent fracture energy. The fracture energy thus calculated seems to be size-independent.
Resumo:
Alternating differential scanning calorimetry measurements have been undertaken on the Ge15Te85-xInx (1 <= x <= 11) series of glasses. It is found that there is a marginal decrease in the glass transition temperature (T-g) in the composition range 1 <= x <= 3. Above x = 3, a monotonic increase is seen in T-g which indicates a continuous build-up in network connectivity and absence of any nanophase separation. The non-reversing heat flow (Delta H-NR) has been found to exhibit a broad trough between the compositions x = 3 and 7, which clearly indicates the presence of a thermally reversing window in Ge15Te85-xInx glasses in the composition range 3 <= x <= 7.
Resumo:
A new ternary iron(III) complex [FeL(dpq)] containing dipyridoquinoxaline (dpq) and 2,2-bis(3,5-di-tert-butyl-2-hydroxybenzyl)aminoacetic acid (H3L) is prepared and structurally characterized by X-ray crystallography. The high-spin complex with a FeN3O3 core shows a quasi-reversible iron(III)/iron(II) redox couple at -0.62 V (vs SCE) in DMF/0.1 M TBAP and a broad visible band at 470 nm in DMF/Tris buffer. Laser photoexcitation of this phenolate (L)-to-iron(III) charge-transfer band at visible wavelengths including red light of >= 630 nm leads to cleavage of supercoiled pUC19 DNA to its nicked circular form via a photoredox pathway forming hydroxyl radicals.
Resumo:
The quantity of fruit consumed by dispersers is highly variable among individuals within plant populations. The outcome Of Such selection operated by firugivores has been examined mostly with respect to changing spatial contexts. The influence of varying temporal contexts on frugivore choice, and their possible demographic and evolutionary consequences is poorly understood. We examined if temporal variation in fruit availability across a hierarchy of nested temporal levels (interannual, intraseasonal, 120 h, 24 h) altered frugivore choice for a complex seed dispersal system in dry tropical forests of southern India. The interactions between Phyllanthus emblica and its primary disperser (ruminants) was mediated by another frugivore (a primate),which made large quantities of fruit available on the ground to ruminants. The direction and strength of crop size and neighborhood effects on this interaction varied with changing temporal contexts.Fruit availability was higher in the first of the two study years, and at the start of the season in both years. Fruit persistence on trees,determined by primate foraging, was influenced by crop size andconspecific neighborhood densities only in the high fruit availability year. Fruit removal by ruminants was influenced by crop size in both years and neighborhood densities only in the high availability year. In both years, these effects were stronger at the start of the season.Intraseasonal reduction in fruit availability diminished inequalities in fruit removal by ruminants and the influence of crop size and fruiting neighborhoods. All trees were not equally attractive to frugivores in a P. emblica population at all points of time. Temporal asymmetry in frugivore-mediated selection could reduce potential for co-evolution between firugivores and plants by diluting selective pressures. Inter-dependencies; formed between disparate animal consumers can add additional levels of complexity to plant-frugivore mutualistic networks and have potential reproductive consequences for specific individuals within populations.
Resumo:
We show that the extended Ananthakrishna's model exhibits all the features of the Portevin - Le Chatelier effect including the three types of bands. The model reproduces the recently observed crossover from a low dimensional chaotic state at low and medium strain rates to a high dimensional power law state of stress drops at high strain rates. The dynamics of crossover is elucidated through a study of the Lyapunov spectrum.
Resumo:
With the increased utilization of advanced composites in strategic industries, the concept of Structural Health Monitoring (SHM) with its inherent advantages is gaining ground over the conventional methods of NDE and NDI. The most attractive feature of this concept is on-line evaluation using embedded sensors. Consequently, development of methodologies with identification of appropriate sensors such as PVDF films becomes the key for exploiting the new concept. And, of the methods used for on-line evaluation acoustic emission has been most effective. Thus, Acoustic Emission (AE) generated during static tensile loading of glass fiber reinforced plastic composites was monitored using a Polyvinylidene fluoride (PVDF) film sensor. The frequency response of the film sensor was obtained with pencil lead breakage tests to choose the appropriate band of operation. The specimen considered for the experiments were chosen to characterize the differences in the operation of the failure mechanisms through AE parametric analysis. The results of the investigations can be characterized using AE parameter indicating that a PVDF film sensor was effective as an AE sensor used in structural health monitoring on-line.
Resumo:
Extensive, and collocated measurements of the mass concentrations (M-B) of aerosol black carbon (BC) and (M-T) of composite aerosols were made over the Arabian Sea, tropical Indian Ocean and the Southern Ocean during a trans-continental cruise experiment. Our investigations show that MB remains extremely low(<50 ng m(-3)) and remarkably steady (in space and time) in the Southern Ocean (20 degrees S to 56 degrees S). In contrast, large latitudinal gradients exist north of similar to 20 degrees S; M-B increasing exponentially to reach as high as 2000 ng m(-3) in the Arabian Sea (similar to 8 degrees N). Interestingly, the share of BC showed a distinctly different latitudinal variation, with a peak close to the equator and decreasing on either side. Large fluctuations were seen in M-T over Southern Ocean associated with enhanced production of sea-salt aerosols in response to sea-surface wind speed. These spatio-temporal changes in M-B and its mixing ratio have important implications to regional and global climate.
Resumo:
The fracture behavior of concrete–concrete interface is characterized using acoustic emission (AE). Beams of different sizes having jointed interface between two different strengths of concrete are tested. The results of load, displacement, CMOD, AE-events and AE-energy are analyzed. The width of fracture process zone and damage zone are computed using AE-data and are found to be independent of size. It is observed that, as the difference in compressive strength of concrete on either side of interface increases, the load carrying capacity, number of AE-events, AE-energy, width of fracture process zone and damage zone decreases.
Resumo:
We present a generalized adaptive time-dependent density matrix renormalization-group (DMRG) scheme, called the double time window targeting (DTWT) technique, which gives accurate results with nominal computational resources, within reasonable computational time. This procedure originates from the amalgamation of the features of pace keeping DMRG algorithm, first proposed by Luo et al. [Phys. Rev. Lett. 91, 049701 (2003)] and the time-step targeting algorithm by Feiguin and White [Phys. Rev. B 72, 020404 (2005)]. Using the DTWT technique, we study the phenomena of spin-charge separation in conjugated polymers (materials for molecular electronics an spintronics), which have long-range electron-electron interactions and belong to the class of strongly correlated low-dimensional many-body systems. The issue of real-time dynamics within the Pariser-Parr-Pople (PPP) model which includes long-range electron correlations has not been addressed in the literature so far. The present study on PPP chains has revealed that, (i) long-range electron correlations enable both the charge and spin degree of freedom of the electron, to propagate faster in the PPP model compared to Hubbard model, (ii) for standard parameters of the PPP model as applied to conjugated polymers, the charge velocity is almost twice that of the spin velocity, and (iii) the simplistic interpretation of long-range correlations by merely renormalizing the U value of the Hubbard model fails to explain the dynamics of doped holes/electrons in the PPP model.
Resumo:
Terahertz time domain spectroscopy has been used to study low frequency confined acoustic phonons of silver nanoparticles embedded in poly (vinyl alcohol) matrix in the spectral range of 0.1-2.5 THz. The real and imaginary parts of the dielectric function show two bands at 0.60 and 2.12 THz attributed to the spheroidal and toroidal modes of silver nanoparticles, thus demonstrating the usefulness of terahertz time domain spectroscopy as a complementary technique to Raman spectroscopy in characterizing the nanoparticles. (C) 2010 American Institute of Physics. [doi:10.1063/1.3456372]
Acoustic emission technique for leak detection in an end shield of a pressurised heavy water reactor
Resumo:
This paper discusses a successful application of the Acoustic Emission Technique (AET) for the detection and location of leak paths present on an inaccessible side of an end shield of a Pressurised Heavy Water Reactor (PHWR). The methodology was based on the fact that air- and water-leak AE signals have different characteristic features. Baseline data was generated from a sound end shield of a PHWR for characterising the background noise. A mock-up end shield system with saw-cut leak paths was used to verify the validity of the methodology. It was found that air-leak signals under pressurisation (as low as 3 psi) could be detected by frequency domain analysis. Signals due to air leaks from various locations of defective end shield were acquired and analysed. It was possible to detect and locate leak paths. The presence of detected leak paths was further confirmed by an alternative test.
Resumo:
Acoustic emission (AE) technique was used to characterise drilling of composite laminates. Uni-directional glass fibre reinforced plastic (GFRP) laminates consisting of 12-layers and 16-layers (0/90)(s) were drilled using a twist drill and the generated AE was monitored. Results of the investigations reveal that the complexion of the acoustic emission root mean square (AE-RMS) signal response changes from the drill entry to the exit thus giving an overall understanding about the different events that take place during drilling. Also, AE-RMS signal level increases with an increase in the applied thrust and further reveals that it is possible to evaluate the drill induced damages in composites through AE signal characterisation. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
The present work gives a comprehensive numerical study of the evolution and decay of cylindrical and spherical nonlinear acoustic waves generated by a sinusoidal source. Using pseudospectral and predictor–corrector implicit finite difference methods, we first reproduced the known analytic results of the plane harmonic problem to a high degree of accuracy. The non-planar harmonic problems, for which the amplitude decay is faster than that for the planar case, are then treated. The results are correlated with the known asymptotic results of Scott (1981) and Enflo (1985). The constant in the old-age formula for the cylindrical canonical problem is found to be 1.85 which is rather close to 2, ‘estimated’ analytically by Enflo. The old-age solutions exhibiting strict symmetry about the maximum are recovered; these provide an excellent analytic check on the numerical solutions. The evolution of the waves for different source geometries is depicted graphically.
Resumo:
The problem of narrowband CFAR (constant false alarm rate) detection of an acoustic source at an unknown location in a range-independent shallow ocean is considered. If a target is present, the received signal vector at an array of N sensors belongs to an M-dimensional subspace if N exceeds the number of propagating modes M in the ocean. A subspace detection method which utilises the knowledge of the signal subspace to enhance the detector performance is presented in thisMpaper. It is shown that, for a given number of sensors N, the performance of a detector using a vector sensor array is significantly better than that using a scalar sensor array. If a target is detected, the detector using a vector sensor array also provides a concurrent coarse estimate of the bearing of the target.
Resumo:
The Pippard-Janovec relations are derived for correlating the anomalous elastic coefficient and the anomalous specific heat near the phase transitions of ferroelectric crystals. These relations are verified in the case of ferroelectric triglycine selenate crystal.