139 resultados para Surfactant flooding
Resumo:
The aggregation property of multiheaded surfactants has been investigated by constant pressure molecular dynamics (MD) simulation in aqueous medium. The model multiheaded surfactants contain more than one headgroup (x = 2, 3, and 4) for a single tail group. This increases the hydrophilic charge progressively over the hydrophobic tail which has dramatic consequences in the aggregation behavior. In particular, we have looked at the change in the aggregation property such as critical micellar concentration (cmc), aggregation number, and size of the micelles for the multiheaded surfactants in water. We find with increasing number of headgroups of the Multiheaded surfactants that the cmc values increase and the aggregation numbers as well as the size of the micelles decrease. These trends are in agreement with the experimental findings as reported earlier with x = 1, 2, and 3. We also predict the aggregation properties of multiheaded surfactant With four headgroups (x = 4) for which no experimental studies exist yet.
Resumo:
A probe, 9-(anthrylmethyl)trimethylammonium chloride, 1, was prepared. 1 binds to calf-thymus DNA or Escherichia coli genomic DNA with high affinity, as evidenced from the absorption titration. Strong hypochromism, spectral broadening and red-shifts in the absorption spectra were observed. Half-reciprocal plot constructed from this experiment gave binding constant of 5±0.5×104 M−1 in base molarity. We employed this anthryl probe-DNA complex for studying the effects of addition of various surfactant to DNA. Surfactants of different charge types and chain lengths were used in this study and the effects of surfactant addition to such probe-DNA complex were compared with that of small organic cations or salts. Addition of either salts or cationic surfactants led to structural changes in DNA and under these conditions, the probe from the DNA-bound complex appeared to get released. However, the cationic surfactants could induce such release of the probe from the probe-DNA complex at a much lower concentration than that of the small organic cations or salts. In contrast the anionic surfactants failed to promote any destabilization of such probe-DNA complexes. The effects of additives on the probe-DNA complexes were also examined by using a different technique (fluorescence spectroscopy) using a different probe ethidium bromide. The association complexes formed between the cationic surfactants and the plasmid DNA pTZ19R, were further examined under agarose gel electrophoresis and could not be visualized by ethidium bromide staining presumably due to cationic surfactant-induced condensation of DNA. Most of the DNA from such association complexes can be recovered by extraction of surfactants with phenol-chloroform. Inclusion of surfactants and other additives into the DNA generally enhanced the DNA melting temperatures by a few °C and at high [surfactant], the corresponding melting profiles got broadened.
Resumo:
A direct borohydride-hydrogen peroxide fuel cell employing carbon-supported Prussian Blue (PB) as mediated electron-transfer cathode catalyst is reported. While operating at 30 °C, the direct borohydride-hydrogen peroxide fuel cell employing carbon-supported PB cathode catalyst shows superior performance with the maximum output power density of 68 mW cm−2 at an operating voltage of 1.1 V compared to direct borohydride-hydrogen peroxide fuel cell employing the conventional gold-based cathode with the maximum output power density of 47 mW cm−2 at an operating voltage of 0.7 V. X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray Analysis (EDAX) suggest that anchoring of Cetyl-Trimethyl Ammonium Bromide (CTAB) as a surfactant moiety on carbon-supported PB affects the catalyst morphology. Polarization studies on direct borohydride-hydrogen peroxide fuel cell with carbon-supported CTAB-anchored PB cathode exhibit better performance with the maximum output power density of 50 mW cm−2 at an operating voltage of 1 V than the direct borohydride-hydrogen peroxide fuel cell with carbon-supported Prussian Blue without CTAB with the maximum output power density of 29 mW cm−2 at an operating voltage of 1 V.
Resumo:
Poly(2-methoxy-5-[2'-ethylhexyoxy]-1,4-phenylenevinylene) (MEHPPV) derivatives with polyacrylic acid (PAA) chains grafted onto their backbone were found to be water soluble, and they exhibited a dramatic increase in their fluorescence intensity in the presence of a variety of surfactants, even at concentrations far below their critical micelle concentrations (CMC). This increase was accompanied by a blue-shift in the emission maximum. These observations are rationalized based on the postulate that the backbone conformation of the conjugated polymer is modulated upon interaction of the surfactant molecules with the polyelectrolytic tethers, which in turn results in a significant depletion of intra-chain interchromophore interactions that are known to cause red-shifted emission bands with significantly lower emission yields.
Resumo:
With an objective to replace a water droplet from a steel surface by oil we study here the impact of injecting a hydrophilic/lipophilic surfactant into the droplet or into the surrounding oil reservoir. Contact angle goniometery, Grazing angle FTIR spectroscopy and Atomic force microscopy are used to record the oil/water interfacial tension, surface energetics of the substrate under the oil and water phases as well as the corresponding physical states of the substrates. Such energetics reflect the rate at which the excess surfactant molecules accumulate at the water/oil interface and desorb into the phases. The molecules diffuse into the substrate from the phases and build up specific molecular configurations which, with the interfacial tension, control the non-equilibrium progress of and the equilibrium status of the contact line. The study shows that the most efficient replacement of water by the surrounding oil happens when a surfactant is sparingly soluble in the supplier oil phase and highly soluble in the recipient water phase.
Resumo:
Calcium sulphate (CaSO4) pseudomicrorods have been synthesized by alow-temperature hydrothermal method using CaSO4 powder as a precursor and hexadecylamine as a surfactant at 180 degrees C for at different intervals of time. The powder X-ray diffraction pattern indicates that the as-formed pseudomicrorods are of orthorhombic phase with lattice parameters a = 7.0023(4) angstrom, b = 6.9939(5) angstrom and c = 6.2434(4) angstrom. Scanning electron microscopy images show that the pseudomicrorods have diameters of about 0.2-2.5 mm and lengths of about 2-10 mm. Fourier transform infrared spectroscopy shows a strong doublet near 609 and 681 cm(-1) arising from nu(4) (SO42) bending vibrations. The strongest band observed at 1132 cm(-1) is associated with nu(3) (SO42-) stretching vibrations. The band near 420-450 cm(-1) is attributed to nu(2) (SO42-) bending vibrations. The Raman spectrum exhibits an intense peak at 1008 cm(-1) associated with the SO42- mode. The photoluminescence spectrum exhibits UV bands (330, 350 nm), strong green bands (402, 436 nm) and weak blue bands (503 nm). A widening of the optical band gap was observed as the particle size decreased.
Resumo:
We have characterized the phase behavior of mixtures of the cationic surfactant cetyltrimethylammonium bromide (CTAB) and the organic salt 3-sodium-2-hydroxy naphthoate (SHN) over a wide range of surfactant concentrations using polarizing optical microscopy and X-ray diffraction. A variety of liquid crystalline phases, such as hexagonal, lamellar with and without curvature defects, and nematic, are observed in these mixtures. At high temperatures the curvature defects in the lamellar phase are annealed gradually on decreasing the water content. However, at lower temperatures these two lamellar structures are separated by an intermediate phase, where the bilayer defects appear to order into a lattice. The ternary phase diagram shows a high degree of symmetry about the line corresponding to equimolar CTAB/SHN composition, as in the case of mixtures of cationic and anionic surfactants.
Resumo:
Oil droplets are dispersed in water by an anionic urfactant to form an emulsion. The lubricity of this emulsion in steel/steel interaction is explored in a ball on flat nanotribometer. The droplet size and charge are measured using dynamic light scattering, while the substrate charge density is estimated using the pH titration method. These data are combined to calculate the DLVO forces for the droplets generated for a range of surfactant concentration and two oil to water volume ratios. The droplets have a clear bi-modal size distribution. The study shows that the smaller droplets which experience weak repulsion are situated (at the highest DLVO barrier) much closer to the substrate than thebigger droplets, which experience the same DLVO force, are. We suggest that the smaller droplets thus play a more important role in lubricity than what the bigger droplets do. The largest volume of such small droplets occurs in the 0.5 mM-1 mM range of surfactant concentration and 1% oil to water volume ratio, where the coefficient of friction is also observed to be the least. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
There has been increasing interest on various properties and applications of electronically conducting polymers. Polyethylenedioxythiophene (PEDOT) is an interesting polymer of this type as it exhibits very high ionic conductivity. In the present study, PEDOT has been electrochemically deposited on stainless steel (SS) substrate for supercapacitor studies. PEDOT/SS electrodes prepared in 0.1M H2SO4 in presence of a surfactant, sodium dodecylsulphate (SDS), have been found to yield higher specific capacitance (SC) than the electrodes prepared from neutral aqueous electrolyte. The effects of concentration of H(2)SO4(,) concentration of SDS, potential of deposition, and nature of supporting electrolytes used for capacitor studies on SC of the PEDOT/SS electrodes have been studied. SC values as high as 250 F/g in 1M oxalic acid have been obtained during the initial stages of cycling. However, there is a rapid decrease in SC on repeated charge-discharge cycling. Spectroscopic data reflect structural changes in PEDOT on extended cycling. (C) 2007 Wiley Periodicals, Inc.
Resumo:
The temperature dependence of the critical micelle concentration (CMC) and a closed-loop coexistence curve are obtained, via Monte Carlo simulations, in the water surfactant limit of a two-dimensional version of a statistical mechanical model for micro-emulsions, The CMC and the coexistence curve reproduce various experimental trends as functions of the couplings. In the oil-surfactant limit, there is a conventional coexistence cure with an upper consolute point that allows for a region of three-phase coexistence between oil-rich, water-rich and microemulsion phases.
Resumo:
The existingm odels of drop breakage in stirred dispersions grossly overpredict the maximum drop size when surface active agents are present inspite of using the lowered value of interfacial tension. It is shown that the difference in the values of dynamic and static interfacial tension, aids the turbulent stresses in drop breakage. When the difference is zero, e.g. for pure liquids and for high concentration of surfactants, the influence of the addition of surfactant is merely to reduce the interfacial tension and can be accounted for by existingm odels. A modified model has been developed, where the drop breakage is assumed to be represented by a Voigt element. The deforming stresses are due to turbulence and the difference between dynamic and static interfacial tensions. The resisting stresses arise due to interfacial tension and the viscous flow inside the drop. The model yields the existing expressions for dmax as special cases. The model has been found to be satisfactory when tested against experimental results using the styrene-water-teepol system.
Resumo:
Molybdenum-doped TiO2 organic-inorganic hybrid nanoparticles were synthesized under mild hydrothermal conditions by in situ surface modification using n-butylamine. This was carried out at 150 degrees C at autogeneous pressure over 18 h. n-Butylamine was selected as a surfactant since it produced nanoparticles of the desired size and shape. The products were characterized using powder X-ray diffraction, Fourier transform infrared spectrometry, dynamic light-scattering spectroscopy, UV-Vis spectroscopy and transmission electron microscopy. Chemical oxygen demand was estimated in order to determine the photodegradation efficiency of the molybdenum-doped TiO2 hybrid nanoparticles in the treatment of pharmaceutical effluents. It was found that molybdenum-doped TiO2 hybrid nanoparticles showed higher photocatalytic efficiency than untreated TiO2 nanoparticles.
Resumo:
Well uniform microspheres of phase pure Covellite were synthesized through a simple hydrothermal approach using poly vinyl pyrrolidone (PVP) as surfactant. The micro-spheres were constituted of numerous self-organized knitted nano-ribbons of similar to 30 nm thickness. The effect of conc. PVP in the hydrothermal precursor solution on the product morphology was investigated. Based on the out-coming product micro-architecture a growth mechanism was proposed which emphasized bubbled nucleation inside the hydrothermal reactor. In a comparative study on linear optical properties, enhancement of luminescent intensity was observed for nano-ribbon clung microspheres rather than that of agglomerates of distorted particles, which may be attributed to better crystallinity as well as reduced surface defects and ionic vacancies for ribbon-like nano-structures.
Resumo:
The surfactant-assisted seed-mediated growth method was used for the formation of gold nanorods (GNRs) directly on gold (Au) and indium tin oxide (ITO) surfaces. Citrate-stabilized similar to 2.6 nm spherical gold nanoparticles (AuNPs) were first self-assembled on ITO or Au surfaces modified with (3-mercaptopropyl)-trimethoxysilane (MPTS) sol-gel film and then immersed in a cationic surfactant growth solution to form GNRs. The growth of GNRs on the MPTS sol gel film modified ITO surface was monitored by UV-visible spectroscopy. The ITO surface with the attached spherical AuNPs shows a surface plasmon resonance band at 550 nm. The intensity of this absorption band increases while increasing the immersion time of the AuNP-modified ITO surface into the growth solution, and after 5 h, an additional shoulder band around 680 nm was observed. The intensity of this shoulder band increases, and it was shifted to longer wavelength as the immersion time of the AuNP-modified ITO surface into the growth solution increases. After 20 h, a predominant wave at 720 nm was observed along with a band at 550 nm. Further immersion of the modified ITO surface into the growth solution did not change the absorption characteristics. The bands observed at 550 and 720 nm were characteristics of GNRs, corresponding to transverse and longitudinal waves, respectively. The AFM images showed the presence of GNRs on the surface of the MPTS sol gel modified ITO surface with a typical length of similar to 100-120 nm and a width of similar to 20-22 nm in addition to a few spherical AuNPs, indicating that seeded spherical AuNPs were not completely involved in the GNRs' formation. Finally, the electrocatalytic activity of the surface-grown GNRs on the MPTS sol gel film modified Au electrode toward the oxidation of ascorbic acid (AA) was studied. Unlike a polycrystalline Au electrode, the surface-grown GNR-modified electrode shows two well-defined voltammetric peaks for AA at 0.01 and 0.35 V in alkaline, neutral, and acidic pHs. The cause for the observed two oxidation peaks for AA was due to the presence of both nanorods and spherical nanoparticles on the electrode surface. The presence of spherical AuNPs on the MPTS sol gel film oxidized AA at more positive potential, whereas the GNRs oxidized AA at less positive potential. The observed 340 mV less positive potential shift in the oxidation of AA suggested that GNRs are better electrocatalysts for the oxidation of AA than the spherical AuNPs.
Resumo:
We predict the dynamic light scattering intensity S(q,t) for the L3 phase (anomalous isotropic phase) of dilute surfactant solutions. Our results are based on a Landau-Ginzburg approach, which was previously used to explain the observed static structure factor S(q, 0). In the extreme limit of small q, we find a monoexponential decay with marginal or irrelevant hydrodynamic interactions. In most other regimes the decay of S(q,t) is strongly nonexponential; in one case, it is purely algebraic at long times.