50 resultados para Surfaces and interfaces


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Calcium plays a crucial role as a secondary messenger in all aspects of plant growth, development and survival. Calcium dependent protein kinases (CDPKs) are the major calcium decoders, which couple the changes in calcium level to an appropriate physiological response. The mechanism by which calcium regulates CDPK protein is not well understood. In this study, we investigated the interactions of Ca2+ ions with the CDPK1 isoform of Cicer arietinum (CaCDPK1) using a combination of biophysical tools. CaCDPK1 has four different EF hands as predicted by protein sequence analysis. The fluorescence emission spectrum of CaCDPK1 showed quenching with a 5 nm red shift upon addition of calcium, indicating conformational changes in the tertiary structure. The plot of changes in intensity against calcium concentrations showed a biphasic curve with binding constants of 1.29 mu M and 120 mu M indicating two kinds of binding sites. Isothermal calorimetric (ITC) titration with CaCl2 also showed a biphasic curve with two binding constants of 0.027 mu M and 1.7 mu M. Circular dichroism (CD) spectra showed two prominent peaks at 208 and 222 nm indicating that CaCDPK1 is a alpha-helical rich protein. Calcium binding further increased the alpha-helical content of CaCDPK1 from 75 to 81%. Addition of calcium to CaCDPK1 also increased fluorescence of 8-anilinonaphthalene-1-sulfonic acid (ANS) indicating exposure of hydrophobic surfaces. Thus, on the whole this study provides evidence for calcium induced conformational changes, exposure of hydrophobic surfaces and heterogeneity of EF hands in CaCDPK1. (C) 2015 Elsevier GmbH. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

X-ray Photoelectron Spectroscopy (XPS) plays a central role in the investigation of electronic properties as well as compositional analysis of almost every conceivable material. However, a very short inelastic mean free path (IMFP) and the limited photon flux in standard laboratory conditions render this technique very much surface sensitive. Thus, the electronic structure buried below several layers of a heterogeneous sample is not accessible with usual photoemission techniques. An obvious way to overcome this limitation is to use a considerably higher energy photon source, as this increases the IMFP of the photo-ejected electron, thereby making the technique more depth and bulk sensitive. Due to this obvious advantage, Hard X-ray Photo Electron Spectroscopy (HAXPES) is rapidly becoming an extremely powerful tool for chemical, elemental, compositional and electronic characterization of bulk systems, more so with reference to systems characterized by the presence of buried interfaces and other types of chemical heterogeneity. The relevance of such an investigative tool becomes evident when we specifically note the ever-increasing importance of heterostructures and interfaces in the context of a wide range of device applications, spanning electronic, magnetic, optical and energy applications. The interest in this nondestructive, element specific HAXPES technique has grown rapidly in the past few years; we discuss critically its extensive use in the study of depth resolved electronic properties of nanocrystals, multilayer superlattices and buried interfaces, revealing their internal structures. We specifically present a comparative discussion, with examples, on two most commonly used methods to determine internal structures of heterostructured systems using XPS. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using in situ, high-speed imaging of a hard wedge sliding against pure aluminum, and image analysis by particle image velocimetry, the deformation field in sliding is mapped at high resolution. This model system is representative of asperity contacts on engineered surfaces and die-workpiece contacts in deformation and machining processes. It is shown that large, uniform plastic strains of 1-5 can be imposed at the Al surface, up to depths of 500 mu m, under suitable sliding conditions. The spatial strain and strain rate distributions are significantly influenced by the initial deformation state of the Al, e.g., extent of work hardening, and sliding incidence angle. Uniform straining occurs only under conditions of steady laminar flow in the metal. Large pre-strains and higher sliding angles promote breakdown in laminar flow due to surface fold formation or flow localization in the form of shear bands, thus imposing limits on uniform straining by sliding. Avoidance of unsteady sliding conditions, and selection of parameters like sliding angle, thus provides a way to control the deformation field. Key characteristics of the sliding deformation such as strain and strain rate, laminar flow, folding and prow formation are well predicted by finite element simulation. The deformation field provides a quantitative basis for interpreting wear particle formation. Implications for engineering functionally graded surfaces, sliding wear and ductile failure in metals are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Interactions of turbulence, molecular transport, and energy transport, coupled with chemistry play a crucial role in the evolution of flame surface geometry, propagation, annihilation, and local extinction/re-ignition characteristics of intensely turbulent premixed flames. This study seeks to understand how these interactions affect flame surface annihilation of lean hydrogen-air premixed turbulent flames. Direct numerical simulations (DNSs) are conducted at different parametric conditions with a detailed reaction mechanism and transport properties for hydrogen-air flames. Flame particle tracking (FPT) technique is used to follow specific flame surface segments. An analytical expression for the local displacement flame speed (S-d) of a temperature isosurface is considered, and the contributions of transport, chemistry, and kinematics on the displacement flame speed at different turbulence-flame interaction conditions are identified. In general, the displacement flame speed for the flame particles is found to increase with time for all conditions considered. This is because, eventually all flame surfaces and their resident flame particles approach annihilation by reactant island formation at the end of stretching and folding processes induced by turbulence. Statistics of principal curvature evolving in time, obtained using FPT, suggest that these islands are ellipsoidal on average enclosing fresh reactants. Further examinations show that the increase in S-d is caused by the increased negative curvature of the flame surface and eventual homogenization of temperature gradients as these reactant islands shrink due to flame propagation and turbulent mixing. Finally, the evolution of the normalized, averaged, displacement flame speed vs. stretch Karlovitz number are found to collapse on a narrow band, suggesting that a unified description of flame speed dependence on stretch rate may be possible in the Lagrangian description. (C) 2015 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The high-kappa gate dielectrics, specifically amorphous films offer salient features such as exceptional mechanical flexibility, smooth surfaces and better uniformity associated with low leakage current density. In this work, similar to 35 nm thick amorphous ZrO2 films were deposited on silicon substrate at low temperature (300 degrees C, 1 h) from facile spin-coating method and characterized by various analytical techniques. The X-ray diffraction and X-ray photoelectron spectroscopy reveal the formation of amorphous phase ZrO2, while ellipsometry analysis together with the Atomic Force Microscope suggest the formation of dense film with surface roughness of 1.5 angstrom, respectively. The fabricated films were integrated in metal-oxide-semiconductor (MOS) structures to check the electrical capabilities. The oxide capacitance (C-ox), flat band capacitance (C-FB), flat band voltage (V-FB), dielectric constant (kappa) and oxide trapped charges (Q(ot)) extracted from high frequency (1 MHz) C-V curve are 186 pF, 104 pF, 0.37V, 15 and 2 x 10(-11) C, respectively. The small flat band voltage 0.37V, narrow hysteresis and very little frequency dispersion between 10 kHz-1 MHz suggest an excellent a-ZrO2/Si interface with very less trapped charges in the oxide. The films exhibit a low leakage current density 4.7 x 10(-9)A/cm(2) at 1V. In addition, the charge transport mechanism across the MOSC is analyzed and found to have a strong bias dependence. The space charge limited conduction mechanism is dominant in the high electric field region (1.3-5 V) due to the presence of traps, while the trap-supported tunneling is prevailed in the intermediate region (0.35-1.3 V). Low temperature solution processed ZrO2 thin films obtained are of high quality and find their importance as a potential dielectric layer on Si and polymer based flexible electronics. (C) 2016 Published by Elsevier B.V.