169 resultados para Surface waves
Resumo:
High frequency three-wave nonlinear 'explosive' interaction of the surface modes of a semi-infinite beam-plasma system under no external field is investigated. The conditions that favour nonlinear instability, keep the plasma linearly stable. The beam runs parallel to the surface. If at least one of the three wave vectors of the surface modes is parallel to the beam, explosive interaction at the surface takes place after it has happened in the plasma bulk, provided the bulk waves propagate almost perpendicular to the surface and are of short wavelength. On the other hand if the bulk modes have long wavelength and propagate almost parallel to the surface, the surface modes can 'explode' first.
Resumo:
The nonlinear propagation characteristics of surface acoustic waves on an isotropic elastic solid have been studied in this paper. The solution of the harmonic boundary value problem for Rayleigh waves is obtained as a generalized Fourier series whose coefficients are proportional to the slowly varying amplitudes of the various harmonics. The infinite set of coupled equations for the amplitudes when solved exhibit an oscillatory slow variation signifying a continuous transfer of energy back and forth among the various harmonics. A conservation relation is derived among all the harmonic amplitudes.
Resumo:
High frequency three-wave nonlinear 'explosive' interaction of the surface modes of a semi-infinite beam-plasma system under no external field is investigated. The conditions that favour nonlinear instability, keep the plasma linearly stable. The beam runs parallel to the surface. If at least one of the three wave vectors of the surface modes is parallel to the beam, explosive interaction at the surface takes place after it has happened in the plasma bulk, provided the bulk waves propagate almost perpendicular to the surface and are of short wavelength. On the other hand if the bulk modes have long wavelength and propagate almost parallel to the surface, the surface modes can 'explode' first.
Resumo:
A systematic derivation of the approximate coupled amplitude equations governing the propagation of a quasi-monochromatic Rayleigh surface wave on an isotropic solid is presented, starting from the non-linear governing differential equations and the non-linear free-surface boundary conditions, using the method of mulitple scales. An explicit solution of these equations for a signalling problem is obtained in terms of hyperbolic functions. In the case of monochromatic excitation, it is shown that the second harmonic amplitude grows initially at the expense of the fundamental and that the amplitudes of the fundamental and second harmonic remain bounded for all time.
Resumo:
The surface water waves are "modal" waves in which the "physical space" (t, x, y, z) is the product of a propagation space (t, x, y) and a cross space, the z-axis in the vertical direction. We have derived a new set of equations for the long waves in shallow water in the propagation space. When the ratio of the amplitude of the disturbance to the depth of the water is small, these equations reduce to the equations derived by Whitham (1967) by the variational principle. Then we have derived a single equation in (t, x, y)-space which is a generalization of the fourth order Boussinesq equation for one-dimensional waves. In the neighbourhood of a wave froat, this equation reduces to the multidimensional generalization of the KdV equation derived by Shen & Keller (1973). We have also included a systematic discussion of the orders of the various non-dimensional parameters. This is followed by a presentation of a general theory of approximating a system of quasi-linear equations following one of the modes. When we apply this general method to the surface water wave equations in the propagation space, we get the Shen-Keller equation.
Resumo:
The coupling of surface acoustic waves propagating in two separated piezoelectric media is studied using the perturbation theory of Auld. The results of the analysis are applied to two configurations using Bi12GeO20 and CdS crystals. It is found that the loss due to coupling is about 7 dB at 50 MHz in the cases of (111)-cut, [110]-prop. Bi12GeO20 and Y-cut, 60°-X prop. CdS combination. On étudie le couplage des ondes acoustiques de surface se propageant sur deux milieux piezo-eléctriques par la théorie de perturbation de Auld. Les resultats d'analyse sont appliqué's aux deux configurations des cristanx Bi12GeO20 et CdS. On trouve que la perte par couplage est environ de 7 dB a 50 MHz dans le cas de combination de (111)-coupe, [110]-prop. Bi12GeO20 et Y-coupe, 60°-X prop. CdS.
Resumo:
A class of I boundary value problems involving propagation of two-dimensional surface water waves, associated with water of uniform finite depth, against a plane vertical wave maker is investigated under the assumption that the surface is covered by a thin sheet of ice. It is assumed that the ice-cover behaves like a thin isotropic elastic plate. Then the problems under consideration lead to those of solving the two-dimensional Laplace equation in a semi-infinite strip, under Neumann boundary conditions on the vertical boundary as well as on one of the horizontal boundaries, representing the bottom of the fluid region, and a condition involving upto fifth order derivatives of the unknown function on the top horizontal ice-covered boundary, along with the two appropriate edge-conditions, at the ice-covered corner, ensuring the uniqueness of the solutions. The mixed boundary value problems are solved completely, by exploiting the regularity property of the Fourier cosine transform.
Resumo:
Closed-form analytical expressions are derived for the reflection and transmission coefficients for the problem of scattering of surface water waves by a sharp discontinuity in the surface-boundary-conditions, for the case of deep water. The method involves the use of the Havelock-type expansion of the velocity potential along with an analysis to solve a Carleman-type singular integral equation over a semi-infinite range. This method of solution is an alternative to the Wiener-Hopf technique used previously.
Resumo:
Using a mixed-type Fourier transform of a general form in the case of water of infinite depth and the method of eigenfunction expansion in the case of water of finite depth, several boundary-value problems involving the propagation and scattering of time harmonic surface water waves by vertical porous walls have been fully investigated, taking into account the effect of surface tension also. Known results are recovered either directly or as particular cases of the general problems under consideration.
Resumo:
We formulate the thin-film hydrodynamics of a suspension of polar self-driven particles and show that it is prone to several instabilities through the interplay of activity, polarity, and the existence of a free surface. Our approach extends, to self-propelling systems, the work of Ben Amar and Cummings [Phys. Fluids 13 1160 (2001)] on thin-film nematics. Based on our estimates the instabilities should be seen in bacterial suspensions and the lamellipodium, and are potentially relevant to the morphology of biofilms. We suggest several experimental tests of our theory.
Resumo:
3-D KCL are equations of evolution of a propagating surface (or a wavefront) Omega(t), in 3-space dimensions and were first derived by Giles, Prasad and Ravindran in 1995 assuming the motion of the surface to be isotropic. Here we discuss various properties of these 3-D KCL.These are the most general equations in conservation form, governing the evolution of Omega(t) with singularities which we call kinks and which are curves across which the normal n to Omega(t) and amplitude won Omega(t) are discontinuous. From KCL we derive a system of six differential equations and show that the KCL system is equivalent to the ray equations of 2, The six independent equations and an energy transport equation (for small amplitude waves in a polytropic gas) involving an amplitude w (which is related to the normal velocity m of Omega(t)) form a completely determined system of seven equations. We have determined eigenvalues of the system by a very novel method and find that the system has two distinct nonzero eigenvalues and five zero eigenvalues and the dimension of the eigenspace associated with the multiple eigenvalue 0 is only 4. For an appropriately defined m, the two nonzero eigenvalues are real when m > 1 and pure imaginary when m < 1. Finally we give some examples of evolution of weakly nonlinear wavefronts.
Resumo:
Recently established moderate size free piston driven hypersonic shock tunnel HST3 along with its calibration is described here. The extreme thermodynamic conditions prevalent behind the reflected shock wave have been utilized to study the catalytic and non-catalytic reactions of shock heated test gases like Ar, N2 or O2 with different material like C60 carbon, zirconia and ceria substituted zirconia. The exposed test samples are investigated using different experimental methods. These studies show the formation of carbon nitride due to the non-catalytic interaction of shock heated nitrogen gas with C60 carbon film. On the other hand, the ZrO2 undergoes only phase transformation from cubic to monoclinic structure and Ce0.5Zr0.5O2 in fluorite cubic phase changes to pyrochlore (Ce2Zr2O7±δ) phase by releasing oxygen from the lattice due to heterogeneous catalytic surface reaction.
Resumo:
The present study is to investigate the interaction of strong shock heated oxygen on the surface of SiO2 thin film. The thermally excited oxygen undergoes a three-body recombination reaction on the surface of silicon dioxide film. The different oxidation states of silicon species on the surface of the shock-exposed SiO2 film are discussed based on X-ray Photoelectron Spectroscopy (XPS) results. The surface morphology of the shock wave induced damage at the cross section of SiO2 film and structure modification of these materials are analyzed using scanning electron microscopy and ion microscopy. Whether the surface reaction of oxygen on SiO2 film is catalytic or non-catalytic is discussed in this paper.
Resumo:
Interaction of shock heated test gas in the free piston driven shock tube with bulk and thin film of cubic zirconium dioxide (ZrO2) prepared by combustion method is investigated. The test samples before and after exposure to the shock wave are analyzed by X-ray diffraction (XRD), X-Ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscope (SEM). The study shows transformation of metastable cubic ZrO2 to stable monoclinic ZrO2 phase after interacting with shock heated oxygen gas due to the heterogeneous catalytic recombination surface reaction.
Resumo:
Magnetoplasmon-type surface polaritons are studied at the interfaces of sandwich structures in the configuration with a magnetic field oriented parallel to the interface but perpendicular to the direction of wave propagation. It is shown that the propagation window for the surface polaritons is shifted to higher frequencies in the presence of the magnetic field directed positively. On reversal of the magnetic field an additional low frequency propagation band appears. Irrespective of the direction and strength of the magnetic field there exists a certain frequency range in which interface polaritons cannot propagate. For sandwich structures for which the dielectric constant and the plasma frequency of one medium are simultaneously greater or less than those of the second medium gaps and multiple branches can appear in the propagation window either for n > 0 or n <; 0 waves. A graphical method for the estimation of critical ranges of B0 and dielectric constant ratios for different sandwich structures, within which gaps and multiple branches appear, is given