82 resultados para Sulphur
Resumo:
Experiments on the leaching of copper from chalcopyrite mineral by the bacterium Thiobacillus ferrooxidans show that, in the presence of adequate amounts of sulphide, iron-grown bacteria preferentially oxidise sulphur in the ore (through direct attachment) rather than ferrous sulphate in solution. At 20% pulp density, the leaching initially takes place by a predominantly direct mechanism. The cell density in the liquid phase increases, but the Fe2+ is not oxidised. However, in the later stages when less solid substrate is available and the cell density becomes very high, the bacteria start oxidising Fe2+ in the liquid phase, thus contributing to the indirect mechanism of leaching. Contrary to expectations, the rate of leaching increased with increasing particle size in spite of the decreasing specific surface area. This has been found to be due to increasing attachment efficiency with increase in particle size.
Resumo:
Monosulphides of the first-row transition metals have been studied by X-ray and UV photoelectron spectroscopy. Systematics in the valence bands as well as metal and sulphur core levels across the series have been discussed. Exchange splittings and spin-orbit splittings in these compounds have been examined. CuS is found to show features of both S2 and S22.
Resumo:
The nature of coordination in metal monothiocarbamates is shown to depend on the hardness or softness of the metal ton. Thus, the monothiocarbamate ion acts as a monodentate ligand with metal-sulphur bending when the metal ion is a soft acid while it acts as a bidentate ligand when the metal ion is a hard acid; it can exhibit either behaviour when the metal ion is a borderline acid. In dialkyltin and dialkylmonocholorotin complexes, the monothiocarbamate ion acts as a bidentate ligand with strong Sn-S bonding while in trialkyl-or triaryl-tin complexes it acts essentially as a monodentate ligand. Thus, R3Sn(I) seems to be a soft or borderline acid while R2Sn(II) is a hard acid.
Resumo:
Diphenyl sulphoxide (DPSO) complexes of some divalent metal perchlorates and chlorides are prepared The perchlorates of Mn, Co, Ni, Zn and Cd have the general formula [M(DPSO)6](CIO4)2. The Cu(II) complex is found to have the composition [Cu(DPSO)4] (CIO42. The chloro complex having the formula ZnCl2. 2DPSO, CdCl2.DPSO, HgCl2. DPSO and PdCl2. 2 DPSO have also been obtained. Infrared spectra indicate that the DPSO complexes of Mn, Co, Ni, Cu and Zn are oxygen-bonded while those of Cd, Hg and Pd are sulphur-bonded. The magnetic susceptibility and the optical spectral data reveal octahedral coordination for Mn, Co and Ni complexes. From the electronic spectra of Co and NI complexes, the ligand field parameters, Dq and β, are calculated.
Resumo:
TiO·5DMSO(ClO4)2, ZrO·8DMSO(ClO4)2 and Th·12DMSO(ClO4)4 are prepared by reaction of the respective metal perchlorates with an excess of dimethyl sulphoxide. The last two complexes yield ZrO·6DMSO(ClO4)2 and Th·6DMSO(ClO4)4 on heating around 185°C, while the titanyl complex explodes at 190°C. The extra DMSO molecules in the zirconyl and thorium complexes seem to be held in the lattice. In the parent complexes, the co-ordinated DMSO molecules are bonded by oxygen to the metal atoms while in the DMSO complexes of zirconyl and thorium perchlorates, obtained by heating at 185°C, the bonding involves the sulphur, indicating a change in the bonding during the process of heating.
Resumo:
Much of the chemical structure of thiostrepton, a sulphur containing metabolic product of the microorganism Streptomyces azureus, has been determined by X-ray crystallographic techniques.
Resumo:
A few red degraded bands attributable to NS have been reported earlier by Fowler and Barker, Dressler and Barrow et al, and they occur in the same region (2300 to 2700 Å) as the bands of the known systems (C2∑+-X2P{cyrillic}) and (A2Δ-X2P{cyrillic}). Measurements made on the heads of some of these weak bands led Barrow et al. to believe that these bands may form a system analogous to the β-system of NO and be due to a2P{cyrillic}-2P{cyrillic} transition. The spectrum of NS has now been studied in a little more detail by means of an uncondensed discharge through dry nitrogen and sulphur vapour in the presence of argon and thirty three bands belonging to this system have been recorded in the region 2280 to 2760 Å. It has been found possible to represent the band heads by means of the equation {Mathematical expression}. Taking the lower state doublet interval as 223 cm-1, it is shown that the separation in the upper state is 94 cm-1. The ratio of the force constants in the upper and the ground states is found to be 0·39 and is nearly the same as that in the β-system of NO (0·30). The present vibrational analysis therefore supports the view that these new red degraded bands of NS arise from a (B2P{cyrillic}→X2P{cyrillic}) transition and the observed intensity distribution in the form of a wide parabola is also in qualitative agreement with what is expected from the moderately large Δ re (∼0·12Å) value.
Resumo:
The hydrolytic reactions of tetrasulphur tetranitride are studied in a homogeneous medium. Alkaline hydrolysis gives sulphite, thiosulphate, sulphate and sulphide whereas the products in acid hydrolysis are mainly sulphur dioxide, elemental sulphur and hydrogen sulphide, with traces of polythionates. Under optimum conditions, tetrasulphur tetranitride reacts with sulphite consuming 2 moles of sulphite per mole of sulphur nitride to give 2 moles of trithionate. The reaction of sulphur nitride with thiosulphuric acid gives pentathionate and tetrathionate.
Resumo:
The hydrolytic reactions of esters and amides of thiosulphurous acid are investigated in a homogeneous medium. The esters are hydrolysed by alkali to give sulphide, sulphite and thiosulphate whereas the amides are resistant towards alkali. Both the esters and amides are hydrolysed by acids giving hydrogen sulphide, sulphur dioxide, polythionates and elemental sulphur. The hydrolysis of these esters and amides in presence of sulphurous acid and thiosulphuric acid gives tetrathionate and hexathionate, respectively.
Resumo:
Chloramine-T has been found to bring about the rupture of S-S link in polythionates in acid medium and oxidise all the sulphur present in the chain into sulphuric acid. Quantitative estimation of a polythionate may be made on the basis of this oxidation reaction.
Resumo:
Carbon disulphide, on treatment with alcoholic potash, can readily be oxidised quantitatively by chloramine-T, converting all the sulphur to sulphuric acid. Fourteen equivalents of the oxidant are consumed for every mole of carbon disulphide. Since excess of chloramine-T may be determined iodimetrically, this reaction may be used for the determination of carbon disulphide. It may also be applied to the determination of xanthates.
Resumo:
An extracellular β-glucosidase (EC 3.2.1.21) has been purified to homogeneity from the culture filtrate of a thermophilic fungus, Humicola lanuginosa (Griffon and Maublanc) Bunce, using duplicating paper as the carbon source. The enzyme was purified 82-fold with a 43% yield by ion-exchange chromatography and gel filtration. The molecular weight of the protein was estimated to be 135,000 by gel filtration and 110,000 by electrophoresis. The sedimentation coefficient was 10.5 S. It was an acidic protein containing high amounts of acidic amino acid residues. It was poor in sulphur-containing amino acids. It also contained 9% carbohydrate. The enzyme activity was optimum at pH 4.5 and at 60°C. The enzyme was stable in the pH range 6–9 for 24 h at 25°C. The enzyme had similar affinities towards cellobiose and p-nitrophenyl-β-d-glucoside with Km values of 0.44 mM and 0.50 mM, respectively. The enzyme was capable of hydrolysing larchwood xylan, xylobiose and p-nitrophenyl-β-d-xyloside, though to a lesser extent. The enzyme was specific for the β-configuration and glucose moiety in the substrate.
Resumo:
Recent trends in the use of dispersed solid electrolytes and auxiliary electrodes in galvanic cells have increased the need for assessment of materials compatibility. In the design of dispersed solid electrolytes, the potential reactions between the dispersoid and the matrix must be considered. In galvanic cells, possible interactions between the dispersoid and the electrode materials must also be considered in addition to ion exchange between the matrix and the electrode. When auxiliary electrodes, which convert the chemical potential of a component present at the electrode into an equivalent chemical potential of the neutral form of the migrating species in the solid electrolyte are employed, displacement reactions between phases in contact may limit the range of applicability of the cell. Examples of such constraints in the use of oxide dispersoids in fluoride solid electrolytes and NASICON/Na2S couple for measurement of sulphur potential are illustrated with the aid of Ellingham and stability field diagrams.
Resumo:
It has been observed that a suspension of sodium fluoride in boiling acetonitrile could be used for the preparation of fluorine compounds such as silicon tetrafluoride [1], thiophosphoryl fluoride [2], sulphur tetrafluoride [3,4], and fluorocyclophosphazenes [5]. This method, when adopted for the fluorination of sulphuryl chloride [6], it is observed that a mixture of sulphuryl fluoride and sulphuryl chloro fluoride is obtained. On the other hand, when lead fluoride is substituted for sodium fluoride, pure sulphuryl chloro fluoride is evolved. Based on this observation, a new method has been standardised for the preparation of a pure sample of sulphuryl chlorofluoride by fluorinating sulphuryl chloride by lead fluoride in acetonitrile medium.
Resumo:
The paper aims to assess the potential of decentralized bioenergy technologies in meeting rural energy needs and reducing carbon dioxide (CO2) emissions. Decentralized energy planning is carried out for the year 2005 and 2020. Decentralized energy planning model using goal programming technique is applied for different decentralized scales (village to a district) for obtaining the optimal mix of energy resources and technologies. Results show that it is possible to meet the energy requirements of all the services that are necessary to promote development and improve the quality of life in rural areas from village to district scale, by utilizing the locally available energy resources such as cattle dung, leaf litter and woody biomass feedstock from bioenergy plantation on wastelands. The decentralized energy planning model shows that biomass feedstock required at village to district level can even be obtained from biomass conserved by shifting to biogas for cooking. Under sustainable development scenario, the decentralized energy planning model shows that there is negligible emission of CO2, oxide of Sulphur (SOx) and oxide of nitrogen (NOx), even while meeting all the energy needs.