96 resultados para Styrene-Butadiene Rubber (SBR), Polymer Additives, Polymers,
Resumo:
A new class of photo-cross-linkable main-chain liquid crystalline polymers (PMCLCPs) containing bis(benzylidene)cycloallranone groups have been synthesized and studied for their liquid crystalline and photochemical properties. The bis(benzylidene)cycloalkanone group in the chain functions both as a mesogen and as a photoreactive center. All of the polymers exhibit a nematic mesophase. Two kinds of photoreactions, namely, photoisomerization and photo-cross-linking, operate in these polymers. Above Tu at the initial stages of irradiation, photoisomerization predominates the cross-linking, which resulta in the disruption of the chromophore aggregates. Below T8, because of the restricted mobility of the chains, only cross-linking takes place. Studies on the model compound, bis(benzylidene)cyclopentanone, confii the above observations and demonstrate further that the cross-linking proceeds by the 2r + 2r cycloaddition reaction of the bis(benzylidene)cycloallranone moieties. The cross-linking rate decreases with increase in the size of the cycloalkanone ring. Heating the solution cast polymer fii results in the ordered aggregation of the chromophores just above TI and also at the crystal to crystal transition temperature, which facilitates the phobcross-linking reactions. In the isotropic phase, the random orientation of the chromophores drastically curtails the cross-linking rata
Synthesis, characterization, and thermal degradation studies on group VIA derived weak-link polymers
Resumo:
Polymers containing group VIA derived weak links, viz. poly(styrene disulfide) (PSD), poly- (styrene tetrasulfide) (PST), and poly(styrene diselenide) (PSDSE), have been synthesized. The polymers PSD and PST were characterized by NMR, IR, UV, TGA, and fast atom bombardment m w spectrometric (FABMS) techniques. The presence of different configurational sequences in PSD and PST were identified by *3C NMR spectroscopy. PSDSE, being insoluble in common organic solvents, was characterized using solid-state lac NMR (CP-MAS) spectroscopy. Thermal degradation of polymers under direct pyrolysis-mass spectrometric (DP-MS) conditions revealed that all the polymers undergo degradation through the weaklink scission. A comparative study of the pyrolysis products of these polymers with that of poly(styrene peroxide) (PSP) revealed a smooth transformation down the group with no monomer (styrene or oxygen) formation in PSP to only styrene and selenium metal in PSDSE. This trend of group VIA is explained from the energetics of the C-X bond (X = 0, S, and Se) which also seems to be important in addition to the weak X-X bond cleavage. In PSP and PSD, the behavior is also explained from the energetics of the alkoxy and thiyl radicals. The unique exothermic degradation in PSP compared to endothermic degradation in PSD and PSDSE is explained from the nature of the producta of degradation.
Resumo:
We present results on interfacial shear rheology measurements on Langmuir monolayers of two different polymers, poly(vinyl acetate) and poly(methyl methacrylate) as a function of surface concentration and temperature. While for the high glass transition poly(methyl methacrylate) polymer we find a systematic transition from a viscous dominated regime to an elastic dominated regime as surface concentration is increased, monolayers of the low glass transition polymer, poly(vinyl acetate), remain viscous even at very high surface concentrations. We further interpret the results in terms of the soft glassy rheology model of Sollich et al. P. Sollich, F. C. Lequeux, P. Hebraud and M. E. Cates, Phys. Rev. Lett., 1997, 78, 2020-2023] and provide evidence of possible reduction in glass transition temperatures in both poly(methyl methacrylate) and poly(vinyl acetate) monolayers due to finite size effects.
Resumo:
Lanthanide coordination polymers of the general formula Ln(2)(L)(5)(NO3)(H2O)(4)](n) (Ln = Eu (1), Tb (2), Gd (3)) supported by a novel aromatic carboxylate ligand 4-((1H-benzod]imidazol-1-yl)methyl)benzoic acid (HL) have been synthesized, characterized, and their photoluminescence behavior is examined. The powder X-ray diffraction patterns of complexes 1-3 showed that 1-3 are isostructural; thus, 1 has been chosen as an example to discuss in detail about the molecular structure by single-crystal X-ray diffraction. Complex 1 is a one-dimensional (1D) helical chain-like coordination polymer consisting of unique unsymmetrical dinuclear lanthanide building blocks. The 1D chains are further linked by the significant intermolecular hydrogen-bonding interactions to form a two-dimensional supramolecular network. The Tb3+ complex exhibits bright green luminescence efficiency in the solid state with a quantum yield of 15%. On the other hand, poor luminescence efficiency has been noted for Eu3+-benzoate complex.
Chemical Degradation of Poly(styrene disulfide) and Poly(styrene tetrasulfide) by Triphenylphosphine
Resumo:
The chemical degradation of polysulfide polymers, viz., poly(styrene disulfide), PSD, and poly(styrene tetrasulfide), PST, has been achieved using triphenylphosphine, TPP. The reaction was monitored using P-31 NMR spectroscopy. The solubility analysis of the reaction residues reveals that while PSD degrades completely, PST on the other hand, undergoes complete degradation only when the concentration of TPP is increased. Moreover, the reaction of PST with TPP occurs at room temperature whereas PSD requires a higher temperature. The reaction products were analyzed using the direct pyrolysis mass spectrometric (DP-MS) technique, and their formation has been explained through an ionic mechanism.
Resumo:
Quantum cell models for delocalized electrons provide a unified approach to the large NLO responses of conjugated polymers and pi-pi* spectra of conjugated molecules. We discuss exact NLO coefficients of infinite chains with noninteracting pi-electrons and finite chains with molecular Coulomb interactions V(R) in order to compare exact and self-consistent-field results, to follow the evolution from molecular to polymeric responses, and to model vibronic contributions in third-harmonic-generation spectra. We relate polymer fluorescence to the alternation delta of transfer integrals t(1+/-delta) along the chain and discuss correlated excited states and energy thresholds of conjugated polymers.
Resumo:
This paper presents the first report on a terpolyperoxide (TPPE) synthesized by the oxidative terpolymerization of styrene, methyl methacrylate, and a-methylstyrene. TPPEs of different compositions were synthesized by varying the vinyl monomers feed, and they were then characterized by spectroscopic and thermal studies. The conventional terpolymer equation has been used to predict the composition of TPPEs. The H-1 NMR chemical shift values of TPPEs were found to vary with the composition. The shape of the backbone methylene protons (4.00-4.50 ppm) was found to be sensitive to the sequence distribution of vinyl monomers in the polymer chain. Formaldehyde, benzaldehyde, acetophenone, and methyl pyruvate were identified as the primary degradation products. The overall thermal stability and the average enthalpy of degradation (Delta H-d), as obtained by thermogravimetric analysis and differential scanning calorimetry, respectively, do not vary much with the composition of TPPEs.
Resumo:
We combine multiple scattering and renormalization group methods to calculate the leading order dimensionless virial coefficient k(s) for the friction coefficient of dilute polymer solutions under conditions where the osmotic second virial coefficient vanishes (i.e., at the theta point T-theta). Our calculations are formulated in terms of coupled kinetic equations for the polymer and solvent, in which the polymers are modeled as continuous chains whose configurations evolve under the action of random forces in, the velocity field of the solvent. To lowest order in epsilon=4-d, we find that k(s) = 1.06. This result compares satisfactorily with existing experimental estimates of k(s), which are in the range 0.7-0.8. It is also in good agreement with other theoretical results on chains and suspensions at T-theta. Our calculated k(s) is also found to be identical to the leading order virial coefficient of the tracer friction coefficient at the theta point. We discuss possible reasons for the difficulties encountered when attempting to evaluate k(s) by extrapolating prior renormalization group calculations from semidilute concentrations to the infinitely dilute limit. (C) 1996 American Institute of Physics.
Resumo:
We use a path-integral approach to calculate the distribution P(w, t) of the fluctuations in the work W at time t of a polymer molecule (modeled as an elastic dumbbell in a viscous solvent) that is acted on by an elongational flow field having a flow rate (gamma) over dot. We find that P(w, t) is non-Gaussian and that, at long times, the ratio P(w, t)/ P (-w, t) is equal to expw/(k(B)T)], independent of (gamma) over dot. On the basis of this finding, we suggest that polymers in elongational flows satisfy a fluctuation theorem.
Resumo:
The present review articulates the syntheses and properties of industrially important disulfide and tetrasulfide polymers. The diselenide and ditelluride polymers have also been reviewed, for the first time, so that a comprehensive view on the polymers containing group VIA elements can be obtained. The latter two polymers are gaining considerable current attention due to their semi-conducting properties. The emphasis has been made to sift through the developments in the last ten years or so to get the latest flavour in these rapidly developing polymers. We have also attempted to bring to the fore several contradicting results, like, for example, the crystallinity of ditelluride polymers, to clear the mist in such reports. We hope that this review will help those working in the field to assess the progress achieved in this area and that it may also provide useful orientation for those who wish to become involved.
Resumo:
A series of new photo-crosslinkable main-chain liquid-crystalline polymers containing bis(benzylidene)cycloalkanone units have been studied. These units in the polymers function as mesogens as well as photoactive centres. Polyesters with three different bis(4-hydroxybenzylidene)cycloalkanones corresponding to three cycloalkanones, namely cyclopentanone, cyclohexanone and cycloheptanone, have been prepared. Three dicarboxylic acids with ether linkages, which were derived from oligoethylene oxides, namely triethylene glycol, tetraethylene glycol and pentaethylene glycol, have been used as spacers in these polymers. Polymerization was carried out by both solution and interfacial polycondensation; the latter method gave high-molecular-weight polymers. Structural characterizations were done by ultra-violet, infra-red and H-1 nuclear magnetic resonance spectroscopy. Liquid-crystalline properties were studied by differential scanning calorimetry and polarized-light optical microscopy. These polymers show a nematic mesophase. Liquid-crystalline transition temperatures were correlated with polymer structure. The decrease in transition temperature with increase in cycloalkanone ring size was explained in terms of the change in geometrical anisotropy of bis(benzylidene)cycloalkanone units. MNDO (modified neglect of differential overlap) calculations were performed on the model compounds, bis(4-acetyloxybenzylidene)cycloalkanone to elucidate the geometrical variation of the mesogenic units with cycloalkanone ring size. Studies of photolysis reveal the two kinds of photoreactions that proceed in these polymer systems, namely photoisomerization and photo-crosslinking. The former reaction disrupts the parallel stacking of the chromophores and is reflected as an increase in the ultra-violet spectral intensity. The favourability of these two reactions depends on the mobility of the polymer chains. When the photolysis was done below T-g, photo-crosslinking dominates over photoisomerization. Above T-g, photoisomerization is followed by photo-crosslinking. The photosensitivity of the polymers decreases with increase in size of the cycloalkanone ring.
Resumo:
Organic polymeric electro-optic (E-O) materials have attracted significant attention because of their potential use as fast and efficient components of integrated photonic devices (1,2). However, the practical application of these materials in optical devices is somewhat limited by the stringent material requirements imposed by the device design, fabrication processes and operating environments. Among the various material requirements, the most notable ones are large electro-optic coefficients (r(33)) and high thermal stability (3). The design of poled polymeric materials with high electro-optic activity (r(33)) involves the optimization of the percent incorporation of efficient (large beta mu) second order nonlinear optical (NLO) chromophores into the polymer matrices and the effective creation of poling-induced non-centrosymmetric structures. The factors that affect the material stability are a) the inherent thermal stability of the NLO chromophores, b) the chemical stability of the NLO chromophores during the polymer processing conditions, and c) the long-term dipolar alignment stability at high temperatures. Although considerable progress has been made in achieving these properties (4), organic polymeric materials suitable for practical E-O device applications are yet to be developed. This chapter highlights some of our approaches in the optimization of molecular and material nonlinear optical and thermal properties.
Resumo:
We show analytically that in dilute solutions of high molecular weight polymers, a collapse transition of the chain can be induced by proximity to the critical point of the solvent. The transition is driven by the fluctuations in the medium, which lead to an effective attractive interaction of long range between different parts of the polymer. At the critical point itself, however, the chain adopts the same average conformations that characterize its size in the off-critical limit. In other words, on approach to the critical point, the polymer is found first to contract and collapse, and then subsequently to return to its original dimensions. This behavior has recently been observed in simulations of polymer-solvent mixtures near the lower critical solution temperature of the system, and it is also known to be characteristic of solutions of polymers in bicomponent solvent mixtures near the critical consolute point of the two solvents. (C) 1999 American Institute of Physics. [S0021-9606(99)50431-5].
Resumo:
A new class of biodegradable copolyesters was synthesized by the catalyst-free melt condensation of sorbitol with citric acid, tartaric acid, and sebacic acid. The resulting polymers were designated as poly(sorbitol citric sebacate) p(SCS)] and poly(sorbitol tartaric sebacate) p(STS)]. The synthesized polymers were characterized by Fourier transform infrared spectroscopy, H-1-NMR spectroscopy, and differential scanning calorimetry analysis. Porous spongelike scaffolds were prepared with a salt-leaching technique and characterized with scanning electron microscopy. Tensile testing of the p(SCS) and p(STS) polymers showed that they exhibited a wide range of mechanical properties. The Young's modulus and tensile strengths of the polymers ranged from 1.06 +/- 0.12 to 462.65 +/- 34.21 MPa and from 0.45 +/- 0.04 to 20.32 +/- 2.54 MPa, respectively. In vitro degradation studies were performed on disc-shaped polymer samples. The half-life of the polymers ranged from 0.54 to 38.52 days. The percentage hydration of the polymers was in the range 9.36 +/- 1.26 to 78.25 +/- 1.91, with sol contents of 2-14%. At any given polymer composition, the Young's modulus and tensile strength of p(SCS) was higher than that of p(STS), whereas the degradation rates of p(SCS) was lower than that of p(STS). This was attributed to the structural difference between the citric and tartaric monomers and to the degree of crosslinking. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci 121: 2861-2869, 2011
Resumo:
Studies on redox supercapacitors employing electronically conducting polymers are of great importance for hybrid power sources and pulse power applications. In the present study, polyaniline (PANI) has been potentiodynamically deposited on stainless steel substrate and characterized in a gel polymer electrolyte (GPE). Use of the GPE facilitates a voltage limit of the capacitor to 1 V, instead of 0.75 V in aqueous electrolytes. From charge-discharge studies of the solid-state PANI capacitors, a specific capacitance of 250 F g(-1) has been obtained at a specific power of 7.5 kW kg(-1) of PANI. The values of specific capacitance and specific power are considerably higher than those reported in the literature. High energy and high power characteristics of the PANI are presented. (C) 2002 The Electrochemical Society.