178 resultados para Stress maternel
Resumo:
Powder x-ray diffraction study of Mn2NiGa ferromagnetic shape memory alloy shows the existence of a 7M monoclinic modulated structure at room temperature (RT). The structure of Mn2NiGa is found to be highly dependent on residual stress. For higher stress, the structure is tetragonal at RT, and for intermediate stress it is 7M monoclinic. However, only when the stress is considerably relaxed, the structure is cubic, as is expected at RT since the martensitic transition temperature is 230 K.
Resumo:
Objectives: Glutathionyl haemoglobin (GS-Hb) belonging to the class of glutathionylated proteins has been investigated as a possible marker of oxidative stress in different chronic diseases. The purpose of this study was to examine whether glutathionyl haemoglobin can serve as an oxidative stress marker in non-diabetic chronic renal failure patients on different renal replacement therapies (RRT) through its quantitation, and characterization of the specific binding site of glutathione in haemoglobin molecule by mass spectrometric analysis. Design and methods: The study group consisted of non-diabetic chronic renal failure patients on renal replacement therapy (RRT): hemodialysis (HD), continuous ambulatory peritoneal dialysis (CAPD) and renal allograft transplant (Txp) patients. Haemoglobin samples of these subjects were analyzed by liquid chromatography electrospray ionization mass spectrometry for GS-Hb quantitation. Characterization of GS-Hb was done by tandem mass spectrometry. Levels of erythrocyte glutathione (GSH) and lipid peroxidation (as thiobarbituric acid reacting substances) were measured spectrophotometrically, while glycated baernoglobin (HbA1c) was measured by HPLC. Results: GS-Hb levels were markedly elevated in the dialysis group and marginally in the transplant group as compared to the controls. GS-Hb levels correlated positively with lipid peroxidation and negatively with the erythrocyte glutathione levels in RRT groups indicating enhanced oxidative stress. De novo sequencing of the chymotryptic fragment of GS-Hb established that glutathione is attached to Cys-93 of the beta globin chain. Mass spectrometric quantitation of total glycated haemoglobin showed good agreement with HbA1c estimation by conventional HPLC method. Conclusions: Glutathionyl haemoglobin can serve as a clinical marker of oxidative stress in chronic debilitating therapies like RRT. Mass spectrometry provides a reliable analytical tool for quantitation and residue level characterization of different post-translational modifications of haemoglobin. (c) 2007 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Resumo:
Mycobacterium tuberculosis is a successful pathogen that overcomes numerous challenges presented by the immune system of the host. This bacterium usually establishes a chronic infection in the host where it may silently persist inside a granuloma until, a failure in host defenses, leads to manifestation of the disease. None of the conventional anti-tuberculosis drugs are able to target these persisting bacilli. Development of drugs against such persisting bacilli is a constant challenge since the physiology of these dormant bacteria is still not understood at the molecular level. Some evidence suggests that the in vivo environment encountered by the persisting bacteria is anoxic and nutritionally starved. Based on these assumptions, anaerobic and starved cultures are used as models to study the molecular basis of dormancy. This review outlines the problem of persistence of M. tuberculosis and the various in vitro models used to study mycobacterial latency. The basis of selecting the nutritional starvation model has been outlined here. Also, the choice of M. smegmatis as a model suitable for studying mycobacterial latency is discussed. Lastly, general issues related to oxidative stress and bacterial responses to it have been elaborated. We have also discussed general control of OxyR-mediated regulation and emphasized the processes which manifest in the absence of functional OxyR in the bacteria. Lastly, a new class of protein called Dps has been reviewed for its important role in protecting DNA under stress.
Resumo:
The stress concentration that occurs when load is diffused from a constant stress member into thin sheet is an important problem in the design of light weight structures. By using solutions in biharmonic polar-trigonometric series, the stress concentration can be effectively isolated so that highly accurate information necessary for design can be obtained. A method of analysis yielding high accuracy with limited effort is presented for rectangular panels with transverse edges free or supported by inextensional end ribs. Numerical data are given for panels with length twice the width.
Resumo:
Using a Fourier-integral approach, the problem of stress analysis in a composite plane consisting of two half-planes of different elastic properties rigidly joined along their boundaries has been solved. The analysis is done for a force acting in one of the half-planes for both cases when the force acts parallel and perpendicular to the interface. As a particular case, the interface stresses are evaluated when the interface is smooth. Some properties of the normal stress at the interface are discussed both for plane stress and plane strain conditions.
Resumo:
The stress-optic coefficient (n3/2)(q11-q12) has been determined for a series of 18 optical glasses of different compositions in the wavelength range 5700-3200 Å. The coefficients are negative for all the glasses except for a high-lead-content glass of density 6·7 and refractive index 1·89. The numerical value of the coefficient decreases as one proceeds to the ultraviolet. This behaviour is just the opposite of what is observed in fused silica. By applying Mueller's theory, the strain polarizability constant and its dispersion have been evaluated.
Resumo:
We control the stiffnesses of two dual double cantelevers placed in series to control penetration into a perflurooctyltrichlorosilane monolayer self assembled on aluminium and silicon substrates. The top cantilever which carries the probe is displaced with respect to the bottom cantilever which carries the substrate, the difference in displacement recorded using capacitors gives penetration. We further modulate the input displacement sinusoidally to deconvolute the viscoelastic properties of the monolayer. When the intervention is limited to the terminal end of the molecule there is a strong viscous response in consonance with the ability of the molecule to dissipate energy by the generation of gauche defects freely. When the intervention reaches the backbone, at a contact mean pressure of 0.2GPa the damping disappears abruptly and the molecule registers a steep rise in elastic modulus and relaxation time constant, with increasing contact pressure. We offer a physical explanation of the process and describe this change as due to a phase transition from a liquid like to a solid like state.
Resumo:
Experimental studies are presented to show the effect of thermal stresses on thermal contact conductance (TCC) at low contact pressures. It is observed that in a closed contact assembly, contact pressure acting on the interface changes with the changing temperature of contact members. This change in contact pressure consequently causes variations in the TCC of the junction. A relationship between temperature change and the corresponding magnitude of developed thermal stress in a contact assembly is determined experimentally. Inclusion of a term called temperature dependent load correction factor is suggested in the theoretical model for TCC to make it capable of predicting TCC values more accurately in contact assemblies that experience large temperature fluctuations. [DOI: 10.1115/1.4001615]
Resumo:
An application of Artificial Neural Networks for predicting the stress-strain response of jointed rocks under different confining pressures is presented in this paper. Rocks of different compressive strength with different joint properties (frequency, orientation and strength of joints) are considered in this study. The database for training the neural network is formed from the results of triaxial compression tests on different intact and jointed rocks with different joint properties tested at different confining pressures reported by various researchers in the literature. The network was trained using a three-layered network with the feed-forward back propagation algorithm.About 85% of the data was used for training and the remaining 15% was used for testing the network. Results from the analyses demonstrated that the neural network approach is effective in capturing the stress-strain behaviour of intact rocks and the complex stress-strain behaviour of jointed rocks. A single neural network is demonstrated to be capable of predicting the stress-strain response of different jointed rocks, whose intact strength varies from 11.32 MPa to 123 MPa, spacing of joints varies from 10 cm to 100 cm. and confining pressures range from 0 to 13.8 MPa. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The possibility of advanced indication of moisture stress in a crop by small prepared plots with compacted or partially sand-substituted soils is examined by an analytical simulation. A series of soils and three crops are considered for the simulation. The moisture characteristics of the soils are calculated with an available model. Using average potential evapotranspiration values and a simple actual evapotranspiration model, the onset of moisture stress in the natural and indicator plots is calculated for different degrees of sand substitution and compaction. Cases where sand substitution fails are determined. The effect of intervening rainfall and limited root depth on the beginning of moisture stress is investigated.
Resumo:
Results of photoelastic investigation conducted on annulii containing a radial crack at inner edge and subjected to diametrical tension are reported. The cracks are oriented at 90°, 60° and 45° to the loading direction. The Stress-Intensity Factors (SIFs) were determined by analysing the crack-tip stress fields. Smith and Smith's method [Engng Fracture Mech.4, 357–366 (1972)] and a modified method developed earlier by the authors (to be published) were adopted in the evaluation of SIFs.