139 resultados para Stochastic exponential stabilities
Resumo:
We study stochastic games with countable state space, compact action spaces, and limiting average payoff. ForN-person games, the existence of an equilibrium in stationary strategies is established under a certain Liapunov stability condition. For two-person zero-sum games, the existence of a value and optimal strategies for both players are established under the same stability condition.
Resumo:
A new finite element method is developed to analyse non-conservative structures with more than one parameter behaving in a stochastic manner. As a generalization, this paper treats the subsequent non-self-adjoint random eigenvalue problem that arises when the material property values of the non-conservative structural system have stochastic fluctuations resulting from manufacturing and measurement errors. The free vibration problems of stochastic Beck's column and stochastic Leipholz column whose Young's modulus and mass density are distributed stochastically are considered. The stochastic finite element method that is developed, is implemented to arrive at a random non-self-adjoint algebraic eigenvalue problem. The stochastic characteristics of eigensolutions are derived in terms of the stochastic material property variations. Numerical examples are given. It is demonstrated that, through this formulation, the finite element discretization need not be dependent on the characteristics of stochastic processes of the fluctuations in material property value.
Resumo:
The set of attainable laws of the joint state-control process of a controlled diffusion is analyzed from a convex analytic viewpoint. Various equivalence relations depending on one-dimensional marginals thereof are defined on this set and the corresponding equivalence classes are studied.
Resumo:
Columns which have stochastically distributed Young's modulus and mass density and are subjected to deterministic periodic axial loadings are considered. The general case of a column supported on a Winkler elastic foundation of random stiffness and also on discrete elastic supports which are also random is considered. Material property fluctuations are modeled as independent one-dimensional univariate homogeneous real random fields in space. In addition to autocorrelation functions or their equivalent power spectral density functions, the input random fields are characterized by scale of fluctuations or variance functions for their second order properties. The foundation stiffness coefficient and the stiffnesses of discrete elastic supports are treated to constitute independent random variables. The system equations of boundary frequencies are obtained using Bolotin's method for deterministic systems. Stochastic FEM is used to obtain the discrete system with random as well as periodic coefficients. Statistical properties of boundary frequencies are derived in terms of input parameter statistics. A complete covariance structure is obtained. The equations developed are illustrated using a numerical example employing a practical correlation structure.
Resumo:
A von Mises truss with stochastically varying material properties is investigated for snapthrough instability. The variability of the snap-through load is calculated analytically as a function of the material property variability represented as a stochastic process. The bounds are established which are independent of the knowledge of the complete description of correlation structure which is seldom possible using the experimental data. Two processes are considered to represent the material property variability and the results are presented graphically. Ein von Mises Fachwerk mit stochastisch verteilten Materialeigenschaften wird bezüglich der Durchschlagsinstabilität untersucht. Die Spannbreite der Durchschlagslast wird analytisch als Funktion der Spannbreite der Materialeigenschaften berechnet, die stochastisch verteilt angenommen werden. Eine explizite Gesamtbeschreibung der Struktur ist bei Benutzung experimenteller Daten selten möglich. Deshalb werden Grenzen für die Durchschlagskraft entwickelt, die von der Kenntnis dieser Gesamtbeschreibung unabhängig sind. Zwei Grenzfälle werden betrachtet, um die Spannbreite der Materialeigenschaften darzustellen. Die Ergebnisse werden grafisch dargestellt.
Resumo:
In 1984 Jutila [5] obtained a transformation formula for certain exponential sums involving the Fourier coefficients of a holomorphic cusp form for the full modular group SL(2, Z). With the help of the transformation formula he obtained good estimates for the distance between consecutive zeros on the critical line of the Dirichlet series associated with the cusp form and for the order of the Dirichlet series on the critical line, [7]. In this paper we follow Jutila to obtain a transformation formula for exponential sums involving the Fourier coefficients of either holomorphic cusp forms or certain Maass forms for congruence subgroups of SL(2, Z) and prove similar estimates for the corresponding Dirichlet series.
Resumo:
We investigate the comparative stability of sp(2) bonded planar hexagonal boron nitride (h-BN) nanoribbon (BNNR) edges, using first principles calculations. We find that the pristine armchair edges have the highest degree of stability. Pristine zigzag edges are metastable, favoring planar reconstructions in the form of 5-7 rings] that minimizes the energy. Our investigation further reveals that the pristine zigzag edges can be stabilized against 5-7 reconstructions by passivating the dangling bonds at the edges by other elements, such as hydrogen (H) atoms. Electronic and magnetic properties of nanoribbons depend on the edge shapes and are strongly affected by edge reconstructions.
Resumo:
We develop four algorithms for simulation-based optimization under multiple inequality constraints. Both the cost and the constraint functions are considered to be long-run averages of certain state-dependent single-stage functions. We pose the problem in the simulation optimization framework by using the Lagrange multiplier method. Two of our algorithms estimate only the gradient of the Lagrangian, while the other two estimate both the gradient and the Hessian of it. In the process, we also develop various new estimators for the gradient and Hessian. All our algorithms use two simulations each. Two of these algorithms are based on the smoothed functional (SF) technique, while the other two are based on the simultaneous perturbation stochastic approximation (SPSA) method. We prove the convergence of our algorithms and show numerical experiments on a setting involving an open Jackson network. The Newton-based SF algorithm is seen to show the best overall performance.
Resumo:
The free vibration of strings with randomly varying mass and stiffness is considered. The joint probability density functions of the eigenvalues and eigenfunctions are characterized in terms of the solution of a pair of stochastic non-linear initial value problems. Analytical solutions of these equations based on the method of stochastic averaging are obtained. The effects of the mean and autocorrelation of the mass process are included in the analysis. Numerical results for the marginal probability density functions of eigenvalues and eigenfunctions are obtained and are found to compare well with Monte Carlo simulation results. The random eigenvalues, when normalized with respect to their corresponding deterministic values, are observed to tend to become first order stochastically stationary with respect to the mode count.
Resumo:
Precipitation in small droplets involving emulsions, microemulsions or vesicles is important for Producing multicomponent ceramics and nanoparticles. Because of the random nature of nucleation and the small number of particles in a droplet, the use of a deterministic population balance equation for predicting the number density of particles may lead to erroneous results even for evaluating the mean behavior of such systems. A comparison between the predictions made through stochastic simulation and deterministic population balance involving small droplets has been made for two simple systems, one involving crystallization and the other a single-component precipitation. The two approaches have been found to yield quite different results under a variety of conditions. Contrary to expectation, the smallness of the population alone does not cause these deviations. Thus, if fluctuation in supersaturation is negligible, the population balance and simulation predictions concur. However, for large fluctuations in supersaturation, the predictions differ significantly, indicating the need to take the stochastic nature of the phenomenon into account. This paper describes the stochastic treatment of populations, which involves a sequence of so-called product density equations and forms an appropriate framework for handling small systems.
Resumo:
The general equation for one-dimensional wave propagation at low flow Mach numbers (M less-than-or-equals, slant0·2) is derived and is solved analytically for conical and exponential shapes. The transfer matrices are derived and shown to be self-consistent. Comparison is also made with the relevant data available in the literature. The transmission loss behaviour of conical and exponential pipes, and mufflers involving these shapes, are studied. Analytical expressions of the same are given for the case of a stationary medium. The mufflers involving conical and exponential pipes are shown to be inferior to simple expansion chambers (of similar dimensions) at higher frequencies from the point of view of noise abatement, as was observed earlier experimentally.
Resumo:
The Leipholz column which is having the Young modulus and mass per unit length as stochastic processes and also the distributed tangential follower load behaving stochastically is considered. The non self-adjoint differential equation and boundary conditions are considered to have random field coefficients. The standard perturbation method is employed. The non self-adjoint operators are used within the regularity domain. Full covariance structure of the free vibration eigenvalues and critical loads is derived in terms of second order properties of input random fields characterizing the system parameter fluctuations. The mean value of critical load is calculated using the averaged problem and the corresponding eigenvalue statistics are sought. Through the frequency equation a transformation is done to yield load parameter statistics. A numerical study incorporating commonly observed correlation models is reported which illustrates the full potentials of the derived expressions.
Resumo:
A new approach based on occupation measures is introduced for studying stochastic differential games. For two-person zero-sum games, the existence of values and optimal strategies for both players is established for various payoff criteria. ForN-person games, the existence of equilibria in Markov strategies is established for various cases.
Resumo:
Attempts in the past to model the irregularities of the solar cycle (such as the Maunder minimum) were based on studies of the nonlinear feedback of magnetic fields on the dynamo source terms. Since the alpha-coefficient is obtained by averaging over the turbulence, it is expected to have stochastic fluctuations, and we show that these fluctuations can explain the irregularities of the solar cycle in a more satisfactory way. We solve the dynamo equations in a slab with a single mode, taking the alpha-coefficient to be constant in space but fluctuating stochastically in time with some given amplitude and given correlation time. The same level of percentile fluctuations (about 10 %) produces no effect on an alpha-omega dynamo, but makes an alpha-2 dynamo completely chaotic. The level of irregularities in an alpha-2-omega dynamo qualitatively agrees with the solar behavior, reinforcing the conclusion of Choudhuri (1990a) that the solar dynamo is of the alpha-2-omega-type. The irregularities are found to increase on increasing either the amplitude or the correlation time of the stochastic fluctuations. The alpha-quenching mechanism tends to make the system stable against the irregularities and hence it is inferred that the alpha-quenching should not be too strong so that the irregularities are not completely suppressed. We also present a simple-minded analysis to understand why the stochastic fluctuations in the alpha-omega, alpha-2-omega and alpha-2 regimes have such different outcomes.