53 resultados para Statistical Power
Resumo:
The decentralized power is characterised by generation of power nearer to the demand centers, focusing mainly on meeting local energy needs. A decentralized power system can function either in the presence of grid, where it can feed the surplus power generated to the grid, or as an independent/stand-alone isolated system exclusively meeting the local demands of remote locations. Further, decentralized power is also classified on the basis of type of energy resources used-non-renewable and renewable. These classifications along with a plethora of technological alternatives have made the whole prioritization process of decentralized power quite complicated for decision making. There is abundant literature, which has discussed various approaches that have been used to support decision making under such complex situations. We envisage that summarizing such literature and coming out with a review paper would greatly help the policy/decision makers and researchers in arriving at effective solutions. With such a felt need 102 articles were reviewed and features of several technological alternatives available for decentralized power, the studies on modeling and analysis of economic, environmental and technological asibilities of both grid-connected (GC) and stand-alone (SA) systems as decentralized power options are presented. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Sequential firings with fixed time delays are frequently observed in simultaneous recordings from multiple neurons. Such temporal patterns are potentially indicative of underlying microcircuits and it is important to know when a repeatedly occurring pattern is statistically significant. These sequences are typically identified through correlation counts. In this paper we present a method for assessing the significance of such correlations. We specify the null hypothesis in terms of a bound on the conditional probabilities that characterize the influence of one neuron on another. This method of testing significance is more general than the currently available methods since under our null hypothesis we do not assume that the spiking processes of different neurons are independent. The structure of our null hypothesis also allows us to rank order the detected patterns. We demonstrate our method on simulated spike trains.
Resumo:
The recently developed single network adaptive critic (SNAC) design has been used in this study to design a power system stabiliser (PSS) for enhancing the small-signal stability of power systems over a wide range of operating conditions. PSS design is formulated as a discrete non-linear quadratic regulator problem. SNAC is then used to solve the resulting discrete-time optimal control problem. SNAC uses only a single critic neural network instead of the action-critic dual network architecture of typical adaptive critic designs. SNAC eliminates the iterative training loops between the action and critic networks and greatly simplifies the training procedure. The performance of the proposed PSS has been tested on a single machine infinite bus test system for various system and loading conditions. The proposed stabiliser, which is relatively easier to synthesise, consistently outperformed stabilisers based on conventional lead-lag and linear quadratic regulator designs.
Resumo:
From the autocorrelation function of geomagnetic polarity intervals, it is shown that the field reversal intervals are not independent but form a process akin to the Markov process, where the random input to the model is itself a moving average process. The input to the moving average model is, however, an independent Gaussian random sequence. All the parameters in this model of the geomagnetic field reversal have been estimated. In physical terms this model implies that the mechanism of reversal possesses a memory.
Resumo:
A new family of low-power logic circuits, employing a multiemitter transistor input circuit and a modified complementary p-n-p n-p-n output stage, having almost the same performance as standard TTL circuits and suitable for IC use, is reported in this correspondence.
Resumo:
An analytical solution of the heat transfer problem with viscous dissipation for non-Newtonian fluids with power-law model in the thermal entrance region of a circular pipe and two parallel plates under constant heat flux conditions is obtained using eigenvalue approach by suitably replacing one of the boundary conditions by total energy balance equation. Analytical expressions for the wall and the bulk temperatures and the local Nusselt number are presented. The results are in close agreement with those obtained by implicit finite-difference scheme. It is found that the role of viscous dissipation on heat transfer is completely different for heating and cooling conditions at the wall. The results for the case of cooling at the wall are of interest in the design of the oil pipe line.
Resumo:
Scan circuit generally causes excessive switching activity compared to normal circuit operation. The higher switching activity in turn causes higher peak power supply current which results into supply, voltage droop and eventually yield loss. This paper proposes an efficient methodology for test vector re-ordering to achieve minimum peak power supported by the given test vector set. The proposed methodology also minimizes average power under the minimum peak power constraint. A methodology to further reduce the peak power below the minimum supported peak power, by inclusion of minimum additional vectors is also discussed. The paper defines the lower bound on peak power for a given test set. The results on several benchmarks shows that it can reduce peak power by up to 27%.