129 resultados para Spontaneous Emission
Resumo:
Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants as well as well-known carcinogens. Therefore, it is important to develop an effective receptor for the detection and quantification of such molecules in solution. In view of this, a 1,3-dinaphthalimide derivative of calix4]arene (L) has been synthesized and characterized, and the structure has been established by single crystal XRD. In the crystal lattice, intermolecular arm-to-arm pi center dot center dot center dot pi overlap dominates and thus L becomes a promising receptor for providing interactions with the aromatic species in solution, which can be monitored by following the changes that occur in its fluorescence and absorption spectra. On the basis of the solution studies carried out with about 17 derivatives of the aromatic guest molecular systems, it may be concluded that the changes that occur in the fluorescence intensity seem to be proportional to the number of aromatic rings present and thus proportional to the extent of pi center dot center dot center dot pi interaction present between the naphthalimide moieties and the aromatic portion of the guest molecule. Though the nonaromatic portion of the guest species affects the fluorescence quenching, the trend is still based on the number of rings present in these. Four guest aldehydes are bound to L with K-ass of 2000-6000 M-1 and their minimum detection limit is in the range of 8-35 mu M. The crystal structure of a naphthaldehyde complex, L.2b, exhibits intermolecular arm-to-arm as well as arm-to-naphthaldehyde pi center dot center dot center dot pi interactions. Molecular dynamics studies of L carried out in the presence of aromatic aldehydes under vacuum as well as in acetonitrile resulted in exhibiting interactions observed in the solid state and hence the changes observed in the fluorescence and absorption spectra are attributable for such interactions. Complex formation has also been delineated through ESI MS studies. Thus L is a promising receptor that can recognize PAHs by providing spectral changes proportional to the aromatic conjugation of the guest and the extent of aromatic pi center dot center dot center dot pi interactions present between L and the guest.
Resumo:
We address the long-standing problem of the origin of acoustic emission commonly observed during plastic deformation. We propose a framework to deal with the widely separated time scales of collective dislocation dynamics and elastic degrees of freedom to explain the nature of acoustic emission observed during the Portevin-Le Chatelier effect. The Ananthakrishna model is used as it explains most generic features of the phenomenon. Our results show that while acoustic emission bursts correlated with stress drops are well separated for the type C serrations, these bursts merge to form nearly continuous acoustic signals with overriding bursts for the propagating type A bands.
Resumo:
Notched three point bend specimens (TPB) were tested under crack mouth opening displacement (CMOD) control at a rate of 0.0004 mm/s and during the fracture process acoustic emissions (AE) were simultaneously monitored. It was observed that AE energy could be related to fracture energy. An experimental study was done to understand the behavior of AE energy with parameters of concrete like its strength and size. In this study, AE energy was used as a quantitative measure of size independent specific fracture energy of concrete beams and the concepts of boundary effect and local fracture energy were used to obtain size independent AE energy from which size independent fracture energy was obtained. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Bixbyite type Y2O3:Eu3+ apart from being the efficient red phosphor extensively used in trichromatic fluorescent lamps, it is a typical system one can apply Jorgensen's refined electron spin pairing theory. This can be used to explain the enhancement in Eu3+ emission intensity observed with the aliovalent substitution in the yttria host matrix. Results based on these are explained qualitatively by considering a simple configurational coordinate model. Futhermore, an insight into the different types of defects induced with the aliovalent substitution in the yttria lattice has become possible with EPR probe.
Leak Detection In Pressure Tubes Of A Pressurized Heavy-Water Reactor By Acoustic-Emission Technique
Resumo:
Leak detection in the fuel channels is one of the challenging problems during the in-service inspection (ISI) of Pressurised Heavy Water Reactors (PHWRs). In this paper, the use of an acoustic emission (AE) technique together with AE signal analysis is described, to detect a leak that was ncountered in one (or more) of the 306 fuel channels of the Madras Atomic Power Station (PHWR), Unit I. The paper describes the problems encountered during the ISI, the experimental methods adopted and the results obtained. Results obtained using acoustic emission signal analysis are compared with those obtained from other leak detection methods used in such cases.
Resumo:
Detailed three-dimensional CFD simulations involving flow and combustion chemistry are used to study the effect of swirl induced by re-entrant piston bowl geometries on pollutant emissions from a single-cylinder diesel engine. The baseline engine configuration consists of a hemispherical piston bowl and an injector with finite sac volume. The first iteration involved using a torroidal, slightly re-entrant bowl geometry, and a sac-less injector. Pollutant emission measurements indicated a reduction in emissions with this modification. Simulations on both configurations were then conducted to understand the effect of the changes. The simulation results indicate that the selected piston bowl geometry could actually be reducing the in-cylinder swirl and turbulence and the emission reduction may be entirely due to the introduction of the sac-less injector. In-cylinder air motion was then studied in a number of combustion chamber geometries, and a geometry which produced the highest in-cylinder swirl and Turbulence Kinetic Energy (TKE) around the compression top dead centre (TDC) was identified. The optimal nature of this re-entrant piston bowl geometry is confirmed by detailed combustion simulations and emission predictions. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents observations of SiO maser emission from 161 Mira variables distributed over a wide range of intrinsic parameters like spectral type, bolometric magnitude and amplitude of pulsation. The observations were made at 86.243 GHz, using the 10.4 m millimeter-wave telescope of the Raman Research Institute at Bangalore, India. These are the first observations made using this telescope. From these observations, we have established that the maser emission is restricted to Miras having mean spectral types between M6 and M10. The infrared period-luminosity relation for Mira variables is used to calculate their distances and hence estimate their maser luminosities from the observed fluxes. The maser luminosity is found to be correlated with the bolometric magnitude of the Mira variable. On an H-R diagram, the masing Mira variables are shown to lie in a region distinct from that for the non-masing ones.
Resumo:
In this paper, recent results on band A emission in chemical vapor-deposited diamond films have been analyzed within a vibronic model. The blue-band A (2.8 eV) spectra from undoped diamond films grown by two different techniques have been simulated using the same phonon density distribution g(Omega) and Huang-Rhys factor (S). The same g(Omega) at higher S gives a good fit with the green band A (2.32 eV) as well. This model provides a reasonable alternative approach to the long standing donor-acceptor pair recombination model.
Resumo:
This paper is aimed at investigating the acoustic emission activities during indentation toughness tests on an alumina based wear resistant ceramic and 25 wt% silicon carbide whisker (SIC,) reinforced alumina composite. It has been shown that the emitted acoustic emission signals characterize the crack growth during loading. and unloading cycles in an indentation test. The acoustic emission results indicate that in the case of the composite the amount of crack growth during unloading is higher than that of loading, while the reverse is true in case of the wear resistant ceramics. Acoustic emission activity observed in wear resistant ceramic is less than that in the case of composite. An attempt has been made to correlate the acoustic emission signals with crack growth during indentation test.
Resumo:
We present the results of sub-mm, mm (850 mum, 450 mum and 1250 mum) and radio (1.4 and 4.8 GHz) continuum observations of a sample of 27 K-selected Extremely Red Objects, or EROs, (14 of which form a complete sample with K < 20 and I - K > 5) aimed at detecting dusty starbursts, deriving the fraction of UltraLuminous Infrared Galaxies (ULIGs) in ERO samples, and constraining their redshifts using the radio-FIR correlation. One ERO was tentatively detected at 1250 mum and two were detected at 1.4 GHz, one of which has a less secure identification as an ERO counterpart. Limits on their redshifts and their star forming properties are derived and discussed. We stacked the observations of the undetected objects at 850 mum, 1250 mum and 4.8 GHz in order to search for possible statistical emission from the ERO population as a whole, but no significant detections were derived either for the whole sample or as a function of the average NIR colours. These results strongly suggest that the dominant population of EROs with K < 20 is not comprised of ULIGs like HR 10, but is probably made of radio-quiet ellipticals and weaker starburst galaxies with L < 10(12) L . and SFR < few hundred M. yr(-1).
Resumo:
This paper presents computational and experimental results on a new burner configuration with a mild combustion concept with heat release rates up to 10 MW/m(3). The burner configuration is shown to achieve mild combustion by using air at ambient temperature at high recirculation rates (similar to250%-290%) both experimentally and computationally. The principal features of the configuration are: (1) a burner with forward exit for exhaust gases; (2) injection of gaseous fuel and air as multiple, alternate, peripheral highspeed jets at the bottom at ambient temperature, thus creating high enough recirculation rates of the hot combustion products into fresh incoming reactants; and (3) use of a suitable geometric artifice-a frustum of a cone to help recirculation. The computational studies have been used to reveal the details of the flow and to optimize the combustor geometry based on recirculation rates. Measures, involving root mean square temperature fluctuations, distribution of temperature and oxidizer concentration inside the proposed burner, and a classical turbulent diffusion jet flame, are used to distinguish between them quantitatively. The system, operated at heat release rates of 2 to 10 MW/m(3) (compared to 0.02 to 0.32 MW/m(3) in the earlier studies), shows a 10-15 dB reduction in noise in the mild combustion mode compared to a simple open-top burner and exhaust NOx emission below 10 ppm for a 3 kW burner with 10% excess air. The peak temperature is measured around 1750 K, approximately 300 K lower than the peak temperature in a conventional burner.
Resumo:
We present the first results of an observational programme undertaken to map the fine structure line emission of singly ionized carbon ([ CII] 157 : 7409 mum) over extended regions using a Fabry Perot spectrometer newly installed at the focal plane of a 100 cm balloon- borne far- infrared telescope. This new combination of instruments has a velocity resolution of similar to 200 km s(-1) and an angular resolution of 1.'5. During the first flight, an area of 30' x 15' in Orion A was mapped. These observations extend over a larger area than previous observations, the map is fully sampled and the spectral scanning method used enables reliable estimation of the continuum emission at frequencies adjacent to the [ CII] line. The total [ CII] line luminosity, calculated by considering up to 20% of the maximum line intensity is 0.04% of the luminosity of the far- infrared continuum. We have compared the [ CII] intensity distribution with the velocity- integrated intensity distributions of (CO)-C-13(1- 0), CI(1- 0) and CO( 3- 2) from the literature. Comparison of the [ CII], [ CI] and the radio continuum intensity distributions indicates that the largescale [ CII] emission originates mainly from the neutral gas, except at the position of M 43, where no [ CI] emission corresponding to the [ CII] emission is seen. Substantial part of the [ CII] emission from here originates from the ionized gas. The observed line intensities and ratios have been analyzed using the PDR models by Kaufman et al. ( 1999) to derive the incident UV flux and volume density at a few selected positions. The models reproduce the observations reasonably well at most positions excepting the [ CII] peak ( which coincides with the position of theta(1) Ori C). Possible reason for the failure could be the simplifying assumption of a homogeneous plane parallel slab in place of a more complicated geometry.
Resumo:
We report on the combined X-ray and radio observations of the type Ic SN 2002ap, using XMM-Newton TOO observation of M 74 and the Giant Metrewave Radio Telescope ( GMRT). We account for the presence of a nearby source in the pre-supernova Chandra field of view in our measurements of the X-ray flux (0.3-10 KeV) 5.2 days after the explosion. The X-ray spectrum is well fitted by a power law spectrum with photon index alpha = 2.6. Our results suggest that the prompt X-ray emission originates from inverse Compton scattering of photospheric thermal emission by energetic electrons. Radio observations with the GMRT at 610 MHz (8 days after the explosion) and 1420 MHz (70 days after the explosion) are combined with the high frequency VLA observations of SN 2002ap reported by Berger et al. ( 2002), and the early radiospheric properties of SN 2002ap are compared with similar data from two other supernovae. Finally, the GMRT radio map reveals four other X-ray sources in the field of view of M 74 with radio counterparts.