211 resultados para Specimens
Resumo:
Antibiotic resistance in 40 Staphylococcus aureus clinical isolates from 110 diabetic patients (36%) was evaluated. Of these, 32 (80%) of the isolates showed multidrug-resistance to more than eight antibiotics and 35% isolates were found to be methicillin resistant S. aureus (MRSA). All 40 S. aureus strains (100%) screened from diabetic clinical specimens were resistant to penicillin, 63% to ampicillin, 55% to streptomycin, 50% to tetracycline and 50% to gentamicin. Where as low resistance rate was observed to ciprofloxacin (20%) and rifampicin (8%). In contrast, all (100%) S. aureus strains recorded susceptibility to teicoplanin, which was followed by vancomycin (95%). Genotypical examination revealed that 80% of the aminoglycoside resistant S. aureus (ARSA) have aminoglycoside modifying enzyme (AME) coding genes; however, 20% of ARSA which showed non-AME mediated (adaptive) aminoglycoside resistance lacked these genes in their genome. In contrast all MRSA isolates possessed mecA, femA genetic determinants in their genome.
Resumo:
The room temperature (RT) tensile behaviour of a free-standing high activity Pt-aluminide bond coat has been evaluated by microtensile testing technique. The coating had a typical three-layer microstructure. The stress-strain plot for the free-standing coating was linear, indicating the coating to be brittle at RT. Different fracture features were observed across the coating layers, namely quasi-cleavage in the outer layer and inner interdiffusion zone, and cleavage in the intermediate layer. By employing interrupted tensile test and observing the cross-sectional microstructure of the tested specimens, it was determined that failure of the microtensile samples occurred by the initiation of a single crack in the intermediate layer of the coating and its subsequent inside-out propagation. Such a mechanism of failure has been explained in terms of the fracture features observed across the sample thickness. This mechanism of failure is consistent with fracture toughness values of the individual coating layers. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Volumetric method based adsorption measurements of nitrogen on two specimens of activated carbon (Fluka and Sarabhai) reported by us are refitted to two popular isotherms, namely, Dubunin−Astakhov (D−A) and Toth, in light of improved fitting methods derived recently. Those isotherms have been used to derive other data of relevance in design of engineering equipment such as the concentration dependence of heat of adsorption and Henry’s law coefficients. The present fits provide a better representation of experimental measurements than before because the temperature dependence of adsorbed phase volume and structural heterogeneity of micropore distribution have been accounted for in the D−A equation. A new correlation to the Toth equation is a further contribution. The heat of adsorption in the limiting uptake condition is correlated with the Henry’s law coefficients at the near zero uptake condition.
Resumo:
Notched three-point bend specimens (TPB) were tested under crack mouth opening displacement (CMOD) control at a rate of 0.0004 mm/s and the entire fracture process was simulated using a regular triangular two-dimensional lattice network only over the expected fracture proces zone width. The rest of the beam specimen was discretised by a coarse triangular finite element mesh. The discrete grain structure of the concrete was generated assuming the grains to be spherical. The load versus CMOD plots thus simulated agreed reasonably well with the experimental results. Moreover, acoustic emission (AE) hits were recorded during the test and compared with the number of fractured lattice elements. It was found that the cumulative AE hits correlated well with the cumulative fractured lattice elements at all load levels thus providing a useful means for predicting when the micro-cracks form during the fracturing process, both in the pre-peak and in the post-peak regimes.
Resumo:
Carbon fiber reinforced polymer (CFRP) composite specimens with different thickness, geometry, and stacking sequences were subjected to fatigue spectrum loading in stages. Another set of specimens was subjected to static compression load. On-line acoustic Emission (AE) monitoring was carried out during these tests. Two artificial neural networks, Kohonen-self organizing feature map (KSOM), and multi-layer perceptron (MLP) have been developed for AE signal analysis. AE signals from specimens were clustered using the unsupervised learning KSOM. These clusters were correlated to the failure modes using available a priori information such as AE signal amplitude distributions, time of occurrence of signals, ultrasonic imaging, design of the laminates (stacking sequences, orientation of fibers), and AE parametric plots. Thereafter, AE signals generated from the rest of the specimens were classified by supervised learning MLP. The network developed is made suitable for on-line monitoring of AE signals in the presence of noise, which can be used for detection and identification of failure modes and their growth. The results indicate that the characteristics of AE signals from different failure modes in CFRP remain largely unaffected by the type of load, fiber orientation, and stacking sequences, they being representatives of the type of failure phenomena. The type of loading can have effect only on the extent of damage allowed before the specimens fail and hence on the number of AE signals during the test. The artificial neural networks (ANN) developed and the methods and procedures adopted show significant success in AE signal characterization under noisy environment (detection and identification of failure modes and their growth).
Resumo:
The present study examines the shrinkage behaviour of residually derived black cotton (BC) soil and red soil compacted specimens that were subjected to air-drying from the swollen state. The soil specimens were compacted at varying dry density and moisture contents to simulate varied field conditions. The void ratio and moisture content of the swollen specimens were monitored during the drying process and relationship between them is analyzed. Shrinkage is represented as reduction in void ratio with decrease in water content of soil specimens. It is found to occur in three distinct stages. Total shrinkage magnitude depends on the type of clay mineral present. Variation in compaction conditions effect marginally total shrinkage magnitudes of BC soil specimens but have relatively more effect on red soil specimens. A linear relation is obtained between total shrinkage magnitude and volumetric water content of soil specimens in swollen state and can be used to predict the shrinkage magnitude of soils.
Resumo:
We present here magnetization, specific heat, and Raman studies on single-crystalline specimens of the first pyrochlore member Sm2Ti2O7 of the rare-earth titanate series. Its analogous compound Sm2Zr2O7 in the rare-earth zirconate series is also investigated in the polycrystalline form. The Sm spins in Sm2Ti2O7 remain unordered down to at least T=0.5 K. The absence of magnetic ordering is attributed to very small values of exchange (θcw∼−0.26 K) and dipolar interaction (μeff∼0.15 μB) between the Sm3+ spins in this pyrochlore. In contrast, the pyrochlore Sm2Zr2O7 is characterized by a relatively large value of Sm-Sm spin exchange (θcw∼−10 K); however, long-range ordering of the Sm3+ spins is not established at least down to T=0.67 K due to frustration of the Sm3+ spins on the pyrochlore lattice. The ground state of Sm3+ ions in both pyrochlores is a well-isolated Kramers doublet. The higher-lying crystal field excitations are observed in the low-frequency region of the Raman spectra of the two compounds recorded at T=10 K. At higher temperatures, the magnetic susceptibility of Sm2Ti2O7 shows a broad maximum at T=140 K, while that of Sm2Zr2O7 changes monotonically. Whereas Sm2Ti2O7 is a promising candidate for investigating spin fluctuations on a frustrated lattice, as indicated by our data, the properties of Sm2Zr2O7 seem to conform to a conventional scenario where geometrical frustration of the spin excludes their long-range ordering.
Resumo:
Acoustic emission (AE) energy, instead of amplitude, associated with each of the event is used to estimate the fracture process zone (FPZ) size. A steep increase in the cumulative AE energy of the events with respect to time is correlated with the formation of FPZ. Based on the AE energy released during these events and the locations of the events, FPZ size is obtained. The size-independent fracture energy is computed using the expressions given in the boundary effect model by least squares method since over-determined system of equations are obtained when data from several specimens are used. Instead of least squares method a different method is suggested in which the transition ligament length, measured from the plot of histograms of AE events plotted over the un-cracked ligament, is used directly to obtain size-independent fracture energy. The fracture energy thus calculated seems to be size-independent.
Resumo:
Purpose: Testis specific heat-shock protein 70-2 (HSP70-2), a member of HSP70 chaperone family, is essential for the growth of spermatocytes and cancer cells. We investigated the association of HSP70-2 expression with clinical behaviour and progression of urothelial carcinoma of bladder. Experimental design: We assessed the HSP70-2 expression by RT-PCR and HSP70-2 protein expression by immunofluorescence, flow cytometry, immunohistochemistry and Western blotting in urothelial carcinoma patient specimens and HTB-1, UMUC-3, HTB-9, HTB-2 and normal human urothelial cell lines. Further, to investigate the role of HSP70-2 in bladder tumour development, HSP70-2 was silenced in the high-grade invasive HTB-1 and UMUC-3 cells. The malignant properties of urothelial carcinoma cells were examined using colony formation, migration assay, invasion assay in vitro and tumour growth in vivo. Results: Our RT-PCR analysis and immunohistochemistry analysis revealed that HSP70-2 was expressed in both moderate to well-differentiated and high-grade invasive urothelial carcinoma cell lines studied and not in normal human urothelial cells. In consistence with these results, HSP70-2 expression was also observed in superficially invasive (70%) and muscle-invasive (90%) patient's tumours. Furthermore, HSP70-2 knockdown significantly suppressed cellular motility and invasion ability. An in vivo xenograft study showed that inhibition of HSP70-2 significantly suppressed tumour growth. Conclusions: In conclusion, our data suggest that the HSP70-2 expression is associated with early spread and progression of urothelial carcinoma of bladder cancer and that HSP70-2 can be the potential therapeutic target for bladder urothelial carcinoma. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Not all elastoidin samples from different species of sharks show a high content of tryptophan in contrast to one specimen from an unidentified species examined in our earlier study. There may be considerable species-dependent variation in tryptophan content and analytical artefacts may have occurred. Available analyses for tyrosine in different specimens of fibres also suggest the possibility that the variation in tyrosine content is also species-dependent. Elastoidin, from Galeoscerdo cuveir (Tiger Shark) and another unidentified species, on treatment with formic acid yielded three fractions A,B and C. On the basis of analytical data it appears that specimens of elastoidin containing no (or little) tryptophan may yield fraction B through the solubilization of fraction A by formic acid. C fractions from two specimens of fibres were collagenous in nature. C fractions have been further purified in this study by charcoal treatment which removes a tyrosine-rich contaminant, to yield collagens with only approx. 2–4 residues of tyrosine per assumed mol. wt. of 360000. In the collagen from the unidentified species glucose and galactose were present in the ratio of 2:5; some glucosamine was also present.
Resumo:
The nature of microcracks formed in concrete under repeated uniaxial compressive loads are investigated by experiments on prismatic specimens. The distribution and orientation of cracks formed are studied by optical microscopic techniques. The basic failure mechanism of concrete at the phenomenological and internal structural level are examined by the formation and propagation of cracks. The tests have indicated that local tensile failures constitute the dominant mode of fracture, with the bond cracks forming the major percentage of the total magnitude of cracks. Significant differences were observed in the proportion of bond cracks formed under static and repeated load systems.
Resumo:
A hot rolled two-phase Ti-22Al-25Nb (at.%) alloy containing the orthorhombic (O) and beta(B2) phases was subjected to thermal treatment under different conditions. The experiment was aimed to examine the recrystallization response of the beta(B2) phase (static and dynamic) to microstructure and crystallographic texture evolution using scanning electron microscopy coupled with electron backscattered diffraction (SEM-EBSD). Specimens rolled in the two-phase (O + beta(B2)) region consisted of highly deformed beta(B2) grains. The texture was close to that of the typical bcc deformation texture with a few additional texture components. A subsequent heat treatment of these rolled specimens in single beta(B2) phase region was characterized by static recrystallized beta(B2) grains with the final texture partly inherited from as-rolled material. In contrast, specimens rolled in the single beta(B2) region produced beta(B2) grains with the texture similar to that of completely dynamic recrystallized one. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Moisture absorption characteristics and its effects on the mechanical properties and failure process of polymers (neat epoxy and polyester resins) and composites with simple (glass, carbon and kevlar) and hybrid (glass-carbon, carbon-kevlar and kevlar-glass) fibres were experimentally determined before and after immersion in water at 343 K for 20 days. The maximum moisture content (Mm) and diffusion coefficient (Dx) of these composites were determined. The degradation in ultimate tensile strength and Young's modulus due to the moisture content were experimentally determined and found to be quite significant. Acoustic emissions, from specimens before and after exposure, were monitored during the load cycle, and revealed a significant change in the failure process of these composites. Scanning Electron Microscope (SEM) studies on failed exposed and unexposed specimens revealed resin leach out and fibre prominence.
Resumo:
The morbilliviruses which infect ruminants, rinderpest (RPV) and peste des petits ruminants (PPRV), are difficult to distinguish serologically. They can be distinguished by differential neutralisation tests and by the migration of the major virus structural protein, the nucleocapsid protein, on polyacrylamide gels. Both these methods are time consuming and require the isolation of live virus for identification; they are not suitable for analysis of material directly from post-mortem specimens. We describe a rapid method for differential diagnosis of infections caused by RPV or PPRV, which uses specific cDNA probes, derived from the mRNAs for the nucleocapsid protein of each virus, which can be used to distinguish unequivocally the two virus types rapidly.
Resumo:
A parametric study was carried out to determine the Stress Intensity Factor (SIF) in a cracked circular ring by using the photoelastic technique. The stress intensity factors for mode I deformation were determined by subjecting the specimens to the tensile loading from inner boundary and through the holes. The results of Non-Dimensional Stress Intensity Factor (NDSIF) variation with non-dimensional crack length for both methods of loading are compared with each other and with published results.