71 resultados para South Portugal
Resumo:
Water-rock reactions are driven by the influx of water, which are out of equilibrium with the mineral assemblage in the rock. Here a mass balance approach is adopted to quantify these reactions. Based on field experiments carried out in a granito-gneissic small experimental watershed (SEW), Mule Hole SEW (similar to 4.5 km(2)), quartz, oligoclase, sericite, epidote and chlorite are identified as the basic primary minerals while kaolinite, goethite and smectite are identified as the secondary minerals. Observed groundwater chemistry is used to determine the weathering rates, in terms of `Mass Transfer Coefficients' (MTCs), of both primary and secondary minerals. Weathering rates for primary and secondary minerals are quantified in two steps. In the first step, top red soil is analyzed considering precipitation chemistry as initial phase and water chemistry of seepage flow as final phase. In the second step, minerals present in the saprolite layer are analyzed considering groundwater chemistry as the output phase. Weathering rates thus obtained are converted into weathering fluxes (Q(weathering)) using the recharge quantity. Spatial variability in the mineralogy observed among the thirteen wells of Mule Hole SEW is observed to be reflected in the MTC results and thus in the weathering fluxes. Weathering rates of the minerals in this silicate system varied from few 10 mu mol/L (in case of biotite) to 1000 s of micromoles per liter (calcite). Similarly, fluxes of biotite are observed to be least (7 +/- 5 mol/ha/yr) while those of calcite are highest (1265 791 mol/ha/yr). Further, the fluxes determined annually for all the minerals are observed to be within the bandwidth of the standard deviation of these fluxes. Variations in these annual fluxes are indicating the variations in the precipitation. Hence, the standard deviation indicated the temporal variations in the fluxes, which might be due to the variations in the annual rainfall. Thus, the methodology adopted defines an inverse way of determining weathering fluxes, which mainly contribute to the groundwater concentration. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Spatial and temporal variation in foliar phenology plays a significant role in growth and reproduction of a plant species. Foliar phenology is strongly influenced by environmental factors such as rainfall. A study on phenology of tropical montane forests was undertaken in three different forest patches of the Nilgiri Mountains in peninsular India above 2000 meters ASL. Since August 2000, 500 trees belonging to 70 species of angiosperms were monitored for both vegetative and reproductive phenologies on a monthly basis. Climate data were collected from nearby weather stations. This paper reports results of the study from August 2000 - August 2003 on foliar phenology. Non-parametric correlations and multiple regressions were performed to analyse the influence of environmental factors such as rainfall, temperature and sunshine on foliar phenology. It was found that moisture related factors had a negative influence on the leaf initiation. Circular statistical analyses were performed to understand the seasonality in different phenophases of foliar phenology. Different phenophases of leafing were not significantly seasonal. Results are discussed and compared among three different forest patches on the Nilgiri plateau and also with other montane forest patches across the globe.
Resumo:
The solar radiation flux at the earth's surface has gone through decadal changes of decreasing and increasing trends over the globe. These phenomena known as dimming and brightening, respectively, have attracted the scientific interest in relation to the changes in radiative balance and climate. Despite the interest in the solar dimming/brightening phenomenon in various parts of the world, south Asia has not attracted great scientific attention so far. The present work uses the net downward shortwave radiation (NDSWR) values derived from satellites (Modern Era Retrospective-analysis for Research and Applications, MERRA 2D) in order to examine the multi-decadal variations in the incoming solar radiation over south Asia for the period of 1979-2004. From the analysis it is seen that solar dimming continues over south Asia with a trend of -0.54 Wm(-2) yr(-1). Assuming clear skies an average decrease of -0.05 Wm(-2)yr(-1) in NDSWR was observed, which is attributed to increased aerosol emissions over the region. There is evidence that the increase in cloud optical depth plays the major role for the solar dimming over the area. The cloud optical depth (MERRA retrievals) has increased by 10.7% during the study period, with the largest increase to be detected for the high-level (atmospheric pressure P < 400 hPa) clouds (31.2%). Nevertheless, the decrease in solar radiation and the role of aerosols and clouds exhibit large monthly and seasonal variations directly affected by the local monsoon system, the anthropogenic and natural aerosol emissions. All these aspects are examined in detail aiming at shedding light into the solar dimming phenomenon over a densely populated area. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The continuing low-level seismicity in the vicinity of the Idukki Reservoir, Kerala, is interesting from the perspective of hydrologically triggered earthquakes. While the frequency of triggered earthquakes in the vicinity of a reservoir usually reduces with time and the largest earthquake usually occurs within a few years on the initial filling, the triggered seismicity in the proximity of the Idukki Reservoir seems to be showing a second, delayed peak, as the 1977 (M 3.5) tremor was followed by a slightly larger event in 2011, 24 years after the first burst of activity. Quite unprecedented in the context of reservoir-triggered sequences, we consider this delayed sequence as the hydrologic response of a critically stressed hypocentral region, to monsoonal recharging. The sustained activity several decades after the impoundment and the temporal relation with the monsoon suggest that at least some parts of the reservoir region continue to retain the potential for low-level seismic activity in response to hydrologic cycles.
Resumo:
Causal relationships existing between observed levels of groundwater in a semi-arid sub-basin of the Kabini River basin (Karnataka state, India) are investigated in this study. A Vector Auto Regressive model is used for this purpose. Its structure is built on an upstream/downstream interaction network based on observed hydro-physical properties. Exogenous climatic forcing is used as an input based on cumulated rainfall departure. Optimal models are obtained thanks to a trial approach and are used as a proxy of the dynamics to derive causal networks. It appears to be an interesting tool for analysing the causal relationships existing inside the basin. The causal network reveals 3 main regions: the Northeastern part of the Gundal basin is closely coupled to the outlet dynamics. The Northwestern part is mainly controlled by the climatic forcing and only marginally linked to the outlet dynamic. Finally, the upper part of the basin plays as a forcing rather than a coupling with the lower part of the basin allowing for a separate analysis of this local behaviour. The analysis also reveals differential time scales at work inside the basin when comparing upstream oriented with downstream oriented causalities. In the upper part of the basin, time delays are close to 2 months in the upward direction and lower than 1 month in the downward direction. These time scales are likely to be good indicators of the hydraulic response time of the basin which is a parameter usually difficult to estimate practically. This suggests that, at the sub-basin scale, intra-annual time scales would be more relevant scales for analysing or modelling tropical basin dynamics in hard rock (granitic and gneissic) aquifers ubiquitous in south India. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
The Southern Marginal Zone of the Limpopo Complex is composed of granite-greenstone cratonic rocks reworked by a Neoarchean high-grade tectono-metamorphic event. Petrographic and mineral chemical characterization of an Al-Mg granulite from this zone is presented here. The granulite has a gneissic fabric with distinct Al-rich and Si-rich layers, with the former preserving the unusual lamellar (random and regular subparallel) intergrowths of corundum and symplectic intergrowth of spinel with orthopyroxene. The Al-rich layer preserves mineral assemblages such as rutile with orthopyroxene + sillimanite +/- A quartz, Al-rich orthopyroxene (similar to 11 wt%), spinel + quartz, and corundum in possible equilibrium with quartz, while the Si-rich layer preserves antiperthites and orthopyroxene + sillimanite +/- A quartz, all considered diagnostic of ultrahigh-temperature metamorphism. Application of Al-in-opx thermometry, ternary feldspar thermometry and construction of suitable pressure-temperature phase diagrams, compositional and model proportion isopleth results indicate P-T conditions as high as similar to 1,050-1,100 A degrees C, and similar to 10-12 kbars for the Al-Mg granulite. Our report of ultrahigh-temperature conditions is significant considering that the very high temperature was reached during decompression of an otherwise high-pressure granulite complex (clockwise P-T path), whereas most other ultrahigh-temperature granulites are linked to magma underplating at the base of the crust (counterclockwise P-T path).
Resumo:
Background: There has been growing interest in integrative taxonomy that uses data from multiple disciplines for species delimitation. Typically, in such studies, monophyly is taken as a proxy for taxonomic distinctiveness and these units are treated as potential species. However, monophyly could arise due to stochastic processes. Thus here, we have employed a recently developed tool based on coalescent approach to ascertain the taxonomic distinctiveness of various monophyletic units. Subsequently, the species status of these taxonomic units was further tested using corroborative evidence from morphology and ecology. This inter-disciplinary approach was implemented on endemic centipedes of the genus Digitipes (Attems 1930) from the Western Ghats (WG) biodiversity hotspot of India. The species of the genus Digitipes are morphologically conserved, despite their ancient late Cretaceous origin. Principal Findings: Our coalescent analysis based on mitochondrial dataset indicated the presence of nine putative species. The integrative approach, which includes nuclear, morphology, and climate datasets supported distinctiveness of eight putative species, of which three represent described species and five were new species. Among the five new species, three were morphologically cryptic species, emphasizing the effectiveness of this approach in discovering cryptic diversity in less explored areas of the tropics like the WG. In addition, species pairs showed variable divergence along the molecular, morphological and climate axes. Conclusions: A multidisciplinary approach illustrated here is successful in discovering cryptic diversity with an indication that the current estimates of invertebrate species richness for the WG might have been underestimated. Additionally, the importance of measuring multiple secondary properties of species while defining species boundaries was highlighted given variable divergence of each species pair across the disciplines.
Resumo:
Sapphirine + quartz and orthopyroxene + sillimanite occur in garnet from an Mg-Al granulite from the Central Zone of the Limpopo Complex in South Africa. Textural evidence and a chemical gradient in garnet between the zones preserving the inclusions argue for the formation of sapphirine + quartz after orthopyroxene + sillimanite. Petrological observations, pressure-temperature phase diagrams, and compositional and model proportion results on isopleths indicate the sapphirine + quartz + garnet + orthopyroxene (high-Al) assemblage as the peak metamorphic assemblage (similar to 1050 degrees C at similar to 8.5 kbars), whereas orthopyroxene (low-Al) + sillimanite represents the prograde stage (at ca. 900 degrees C at similar to 8.5 kbars). Our report of these two diagnostic ultrahigh-temperature mineral assemblages in garnet from an Mg-Al granulite is unique, given the rare occurrence of sapphirine + quartz postdating orthopyroxene + sillimanite assemblage in granulites.
Resumo:
Earthquakes triggered by artificial reservoirs have been documented for more than seven decades and the processes leading to this phenomenon are fairly well understood. Larger among such earthquakes are known to occur within a few years of reservoir impoundment and usually the activity decreases with time. A documented example of Reservoir Triggered Seismicity (RTS), the Idukki Reservoir in Kerala, south India, impounded in 1975, is an exception wherein the triggered activity has been revived in 2011, nearly 35 years after the initial burst of activity in 1977, two years after the dam was filled. The magnitude of the largest shock in the 2011 sequence exceeded that of the previously documented largest microearthquake. Presence of faults that are close to failure and vulnerable to increase in pore pressure due to reservoir loading or increased rainfall, or a combination of both seems to trigger shocks in this area. The renewed burst of earthquakes after a prolonged period of reduced activity at the Idukki Reservoir is a rare example of RTS. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Hydrogeological and climatic effect on chemical behavior of groundwater along a climatic gradient is studied along a river basin. `Semi-arid' (500-800 mm of mean annual rainfall), `sub-humid' (800-1,200 mm/year) and `humid' (1,200-1,500 mm/year) are the climatic zones chosen along the granito-gneissic plains of Kabini basin in South India for the present analysis. Data on groundwater chemistry is initially checked for its quality using NICB ratio (<+/- 5 %), EC versus TZ+ (similar to 0.85 correlation), EC versus TDS and EC versus TH analysis. Groundwater in the three climatic zones is `hard' to `very hard' in terms of Ca-Mg hardness. Polluted wells are identified (> 40 % of pollution) and eliminated for the characterization. Piper's diagram with mean concentrations indicates the evolution of CaNaHCO3 (semi-arid) from CaHCO3 (humid zone) along the climatic gradient. Carbonates dominate other anions and strong acids exceeded weak acids in the region. Mule Hole SEW, an experimental watershed in sub-humid zone, is characterized initially using hydrogeochemistry and is observed to be a replica of entire sub-humid zone (with 25 wells). Extension of the studies for the entire basin (120 wells) showed a chemical gradient along the climatic gradient with sub-humid zone bridging semi-arid and humid zones. Ca/Na molar ratio varies by more than 100 times from semi-arid to humid zones. Semi-arid zone is more silicaceous than sub-humid while humid zone is more carbonaceous (Ca/Cl similar to 14). Along the climatic gradient, groundwater is undersaturated (humid), saturated (sub-humid) and slightly supersaturated (semi-arid) with calcite and dolomite. Concentration-depth profiles are in support of the geological stratification i.e., not approximate to 18 m of saprolite and similar to 25 m of fracture rock with parent gneiss beneath. All the wells are classified into four groups based on groundwater fluctuations and further into `deep' and `shallow' based on the depth to groundwater. Higher the fluctuations, larger is its impact on groundwater chemistry. Actual seasonal patterns are identified using `recharge-discharge' concept based on rainfall intensity instead of traditional monsoon-non-monsoon concept. Non-pumped wells have low Na/Cl and Ca/Cl ratios in recharge period than in discharge period (Dilution). Few other wells, which are subjected to pumping, still exhibit dilution chemistry though water level fluctuations are high due to annual recharge. Other wells which do not receive sufficient rainfall and are constantly pumped showed high concentrations in recharge period rather than in discharge period (Anti-dilution). In summary, recharge-discharge concept demarcates the pumped wells from natural deep wells thus, characterizing the basin.
Resumo:
Propagation of convective systems in the meridional direction during boreal summer is responsible for active and break phases of monsoon over south Asia. This region is unique in the world in its characteristics of monsoon variability and is in close proximity of mountains like the Himalayas. Here, using an atmospheric general circulation model, we try to understand the role of orography in determining spatial and temporal scales of these convective systems. Absence of orography (noGlOrog) decreased the simulated seasonal mean precipitation over India by 23 % due to delay in onset by about a month vis-a-vis the full-mountain case. In noGlOrog, poleward propagations were absent during the delayed period prior to onset. Post-onset, both simulations had similar patterns of poleward propagations. The spatial and temporal scales of propagating clouds bands were determined using wavelet analysis. These scales were found to be different in full-mountain and no-mountain experiments in June-July. However, after the onset of monsoon in noGlOrog, these scales become similar to that with orography. Simulations with two different sets of convection schemes confirmed this result. Further analysis shows that the absence (presence) of meridional propagations during early (late) phase of summer monsoon in noGlOrog was associated with weaker (stronger) vertical shear of zonal wind over south Asia. Our study shows that orography plays a major role in determining the time of onset over the Indian region. However, after onset, basic characteristics of propagating convective systems and therefore the monthly precipitation over India, are less sensitive to the presence of orography and are modulated by moist convective processes.
Resumo:
The low level, denuded, laterite landscape of coastal Uttara Kannada has a rich diversity of monsoon herbs, including threatened and newly discovered ones. Our study reveals that honey bees congregate on the ephemeral herb community of Utricularias, Eriocaulons and Impatiens during their gregarious monsoon flowering period. Apis dorsata had highest visitations on Utricularias, Impatiens and Flacourtia indica, whereas Trigona preferred Eriocaulons. Laterite herb flora merits conservation efforts as a keystone food resource for the insect community, especially for honey bees.