63 resultados para Sintered samples
Resumo:
Hydroxyapatite (HA)-based biocomposites have been widely investigated for a multitude of applications and these studies have been largely driven to improve mechanical properties (toughness and strength) without compromising cytocompatibility properties. Apart from routine cell viability/proliferation analysis, limited efforts have been made to quantify the fate processes (cell proliferation, cell cycle, and cell apoptosis) of human fetal osteoblast (hFOB) cells on HA-based composites, in vitro. In this work, the osteoblast cell fate process has been studied on a model hydroxyapatite-titanium (HA-Ti) system using the flow cytometry. In order to retain both HA and Ti, the novel processing technique, that is, spark plasma sintering, was suitably adopted. The cell fate processes of hFOBs, as evaluated using a flow cytometry, revealed statistically insignificant differences among HA-10 wt % Ti and HA and control (tissue culture polystyrene surface) in terms of osteoblast apoptosis, proliferation index as well as division index. For the first time, we provide quantified flow cytometry results to demonstrate that 10 wt % Ti additions to HA do not have any significant influence on the fate processes of human osteoblast-like cells, in vitro.
Resumo:
One of the different issues limiting the wider application of monolithic hydroxyapatite (HA) as an ideal bone replacement material is the lack of reasonably good electrical transport properties. The comprehensive electrical property characterization to evaluate the efficacy of processing parameters in achieving the desired combination of electroactive properties is considered as an important aspect in the development of HA-based bioactive material. In this perspective, the present work reports the temperature (RT-200 degrees C) and frequency (100 Hz-1 MHz) dependent dielectric properties and AC conductivity for a range of HA-CaTiO3 (HA-CT) composites, densified using both conventional pressureless sintering in air as well as spark plasma sintering in vacuum. Importantly, the AC conductivity of spark plasma sintered ceramics similar to upto 10(-5) (Omega cm)(-1)] are found to be considerably higher than the corresponding pressureless sintered ceramics similar to upto 10(-8) (Omega cm)(-1)]. Overall, the results indicate the processing route dependent functional properties of HA-CaTiO3 composites as well as related advantages of spark plasma sintering route. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
The Gd3+ doped Y3-xGdxFe5O12 (x=0.0, 0.05, 0.15, and 0.25) nanopowders were prepared using modified sol-gel route. The structural characterizations such as X-ray diffraction, transmission electron microscopy has been carried out. The nanopowders were sintered at 700 degrees C/3 h. The lattice parameters and density of the samples were increased with an increase of Gd3+ concentration. The microstructure was analyzed using atomic force microscopy. The room temperature dielectric (epsilon' and epsilon `') and magnetic (mu' and mu `') properties were measured in the frequency range 5-50 GHz. with Gd3+ the dielectric properties were enhanced, but there is a decrease in the magnetic properties. The room temperature magnetization studies were carried out up to 1.5 T. the saturation and remnant magnetization were decreased with an increase of gadolinium concentration. These garnets have low permeability, low losses and a broad distribution of FMR line width which makes them a promising material for microwave devices can be used in the high frequency range i.e. up to 50 GHz. (C) 2013 Elsevier BM. All rights reserved.
Resumo:
Although HA is highly biocompatible, one of the major disadvantages of HA include the lack of antibacterial property. In an earlier study, we demonstrated the potential role of magnetic field stimulation on bactericidal property in vitro. Following this, it was hypothesized that antibacterial property can be realized if bacteria are grown on magnetic biocomposites in vitro. In addressing this issue, this study demonstrates the development of HA-Fe3O4-based magnetic substrate with multifunctional properties. For this purpose, HA-xFe(3)O(4) (x: 10, 20 and 40wt%) powder compositions were sintered using uniquely designed spark plasma sintering conditions (three stage sintering with final holding temperature of 1050 degrees C for 5min). A saturation magnetization of 24emu/g is measured with HA-40%Fe3O4. Importantly, all the HA-Fe3O4 composites demonstrated bactericidal property by rupturing the membrane of Escherichia coli bacteria, while supporting cell growth of metabolically active human fetal osteoblast cells over 8d culture. A systematic decrease in bacterial viability with Fe3O4 addition is consistent with a commensurate increase in reactive oxygen species (ROS).
Resumo:
The dispersion of a softer phase in a metallic matrix reduces the coefficient of friction (COF), often at the expense of an increased wear rate at the tribological contact. To address this issue, unlubricated fretting wear tests were performed on spark plasma sintered Cu-Pb nanocomposites against bearing steel. The sintering temperature and the Pb content as well as the fretting parameters were judiciously selected and varied to investigate the role of microstructure (grain size, second-phase content) on the wear resistance properties of Cu-Pb nanocomposites. A combination of the lowest wear rate (similar to 1.5 x 10(-6) mm(3)/Nm) and a modest COF (similar to 0.4) was achieved for Cu-15 wt pct Pb nanocomposites. The lower wear rate of Cu-Pb nanocomposites with respect to unreinforced Cu is attributed to high hardness (similar to 2 to 3.5 GPa) of the matrix, Cu2O/Fe2O3-rich oxide layer formation at tribological interface, and exuding of softer Pb particles. The wear properties are discussed in reference to the characteristics of transfer layer on worn surface as well as subsurface damage probed using focused ion beam microscopy. Interestingly, the flash temperature has been found to have insignificant effect on the observed oxidative wear, and alternative mechanisms are proposed. Importantly, the wear resistance properties of the nanocomposites reveal a weak Hall-Petch-like relationship with grain size of nanocrystalline Cu. (C) The Minerals, Metals & Materials Society and ASM International 2013
Resumo:
The Y3Fe5O12 (YIG) nanopowders were synthesised at different pH using co-precipitation method. The effect of pH on the phase formation of YIG is characterised using XRD, TEM, FTIR and TG/DTA. From the Scherer formula, the particle sizes of the powders were found to be 13, 19 and 28 nm for pH=10, 11 and 12 respectively. It is found that as the pH of the solution increase the particle size is also increases. It is also clear from the TG/DTA curves that as the pH is increasing the weight losses were found to be small. The nanopowders were sintered at 600, 700, 800 and 900 degrees C for 5 h using conventional sintering method. The phase formation is completed at 800 degrees C/5 h which is correlated with TG/DTA. The average grain size of the samples is found to be similar to 161 nm. The high values of M-s=23 emu g(-1) and H-c=22 Oe were recorded for the sample sintered at 900 degrees C.
Resumo:
Solution combustion synthesis technique was adopted to synthesize V2O5, and Mo doped phases, The as-synthesized V2O5, has been reduced by a novel reduction technique to form VO2 typephase. The monophasic nature of the samples as revealed by XRD data and systematic shift in peak position indicated solid solubility up to 2 at % of Mo in VO2 lattice. The crystallite size was found to similar to 40 nm. Particle size measurement carried out using Transmission electron microscope ( TEM) agreed with XRD experiments. Scanning electron microscope revealed the morphology of the particles to be plate like and bimodal. Variation in the metal- insulator transition temperature as a function of doping was investigated by 4-probe electrical resistivity measurement on sintered ceramics.
Resumo:
The development of a viable adsorbed natural gas onboard fuel system involves synthesizing materials that meet specific storage target requirements. We assess the impact on natural gas storage due to intermediate processes involved in taking a laboratory powder sample to an onboard packed or adsorbent bed module. We illustrate that reporting the V/V (volume of gas/volume of container) capacities based on powder adsorption data without accounting for losses due to pelletization and bed porosity, grossly overestimates the working storage capacity for a given material. Using data typically found for adsorbent materials that are carbon and MOF based materials, we show that in order to meet the Department of Energy targets of 180 V/V (equivalent STP) loading at 3.5 MPa and 298 K at the onboard packed bed level, the volumetric capacity of the pelletized sample should be at least 245 V/V and the corresponding gravimetric loading varies from 0.175 to 0.38 kg/kg for pellet densities ranging from 461.5 to 1,000 . With recent revision of the DOE target to 263 V/V at the onboard packed bed level, the volumetric loadings for the pelletized sample should be about 373 V/V.
Resumo:
The growing threats due to increased use of small-caliber armor piercing projectiles demand the development of new light-weight body armor materials. In this context, TiB2 appears to be a promising ceramic material. However, poor sinterability and low fracture toughness remain two major issues for TiB2. In order to address these issues together, Ti as a sinter-aid is used to develop TiB2-(x wt pct Ti), (x = 10, 20) homogeneous composites and a bi-layered composite (BLC) with each layer having Ti content of 10 and 20 wt pct. The present study uniquely demonstrates the efficacy of two-stage spark plasma sintering route to develop dense TiB2-Ti composites with an excellent combination of nanoscale hardness (similar to 36 GPa) and indentation fracture toughness (similar to 12 MPa m(1/2)). In case of BLC, these properties are not compromised w.r.t. homogeneous composites, suggesting the retention of baseline material properties even in the bi-layer design due to optimal relief of residual stresses. The better indentation toughness of TiB2-(10 wt pct Ti) and TiB2-(20 wt pct Ti) composites can be attributed to the observed crack deflection/arrest, indicating better damage tolerance. Transmission electron microscope investigation reveals the presence of dense dislocation networks and deformation twins in alpha-Ti at the grain boundaries and triple pockets, surrounded by TiB2 grains. The dynamic strength of around 4 GPa has been measured using Split Hopkinson Pressure Bar tests in a reproducible manner at strain rates of the order of 600 s(-1). The damage progression under high strain rate has been investigated by acquiring real time images for the entire test duration using ultra-high speed imaging. An attempt has been made to establish microstructure-property correlation and a simple analysis based on Mohr-Coulomb theory is used to rationalize the measured strength properties.
Resumo:
This paper proposes a novel experimental test procedure to estimate the reliability of structural dynamical systems under excitations specified via random process models. The samples of random excitations to be used in the test are modified by the addition of an artificial control force. An unbiased estimator for the reliability is derived based on measured ensemble of responses under these modified inputs based on the tenets of Girsanov transformation. The control force is selected so as to reduce the sampling variance of the estimator. The study observes that an acceptable choice for the control force can be made solely based on experimental techniques and the estimator for the reliability can be deduced without taking recourse to mathematical model for the structure under study. This permits the proposed procedure to be applied in the experimental study of time-variant reliability of complex structural systems that are difficult to model mathematically. Illustrative example consists of a multi-axes shake table study on bending-torsion coupled, geometrically non-linear, five-storey frame under uni/bi-axial, non-stationary, random base excitation. Copyright (c) 2014 John Wiley & Sons, Ltd.
Resumo:
The Sm3+ doped Y3-xSmxFe5O12 (x = 0-3) nanopowders were prepared using modified sol-gel route. The crystalline structure and morphology was confirmed by X-ray diffraction and atomic force microscopy. The nanopowders were sintered at 950 degrees C/90 min using microwave sintering method. The lattice parameters and density of the samples were increased with an increase of Sm3+ concentration. The room temperature dielectric (epsilon' and epsilon `') and magnetic (mu' and mu `') properties were measured in the frequency range up to 20 GHz. The room temperature magnetization studies were carried out using Vibrating sample magnetometer using filed of 1.5 T. Results of VSM show that the saturation and remnant magnetization of Y3-xSmxFe5O12 (0-3) decreases on increasing the Sm concentration (x). The low values of magnetic (mu' and mu `') properties makes them a good candidates for microwave devices, which can be operated in the high frequency range.
Resumo:
Electromagnetic Articulography (EMA) technique is used to record the kinematics of different articulators while one speaks. EMA data often contains missing segments due to sensor failure. In this work, we propose a maximum a-posteriori (MAP) estimation with continuity constraint to recover the missing samples in the articulatory trajectories recorded using EMA. In this approach, we combine the benefits of statistical MAP estimation as well as the temporal continuity of the articulatory trajectories. Experiments on articulatory corpus using different missing segment durations show that the proposed continuity constraint results in a 30% reduction in average root mean squared error in estimation over statistical estimation of missing segments without any continuity constraint.
Resumo:
This paper reports the dynamic compression behavior of ultrafine grained (Hf, Zr)B-2-SiC composites, sintered using reactive spark plasma sintering at 1600 degrees C for 10 min. Dynamic strength of similar to 2.3 GPa has been measured using Split Hopkinson Pressure Bar (SHPB) tests in a reproducible manner at strain rates of 800-1300 s(-1). A comparison with competing boride based armor ceramics, in reference to the spectrum of properties evaluated, establishes the potential of (Hf, Zr)B-2-SiC composites for armor applications. (C) 2015 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
Fracture toughness measurements at the small scale have gained prominence over the years due to the continuing miniaturization of structural systems. Measurements carried out on bulk materials cannot be extrapolated to smaller length scales either due to the complexity of the microstructure or due to the size and geometric effect. Many new geometries have been proposed for fracture property measurements at small-length scales depending on the material behaviour and the type of device used in service. In situ testing provides the necessary environment to observe fracture at these length scales so as to determine the actual failure mechanism in these systems. In this paper, several improvements are incorporated to a previously proposed geometry of bending a doubly clamped beam for fracture toughness measurements. Both monotonic and cyclic loading conditions have been imposed on the beam to study R-curve and fatigue effects. In addition to the advantages that in situ SEM-based testing offers in such tests, FEM has been used as a simulation tool to replace cumbersome and expensive experiments to optimize the geometry. A description of all the improvements made to this specific geometry of clamped beam bending to make a variety of fracture property measurements is given in this paper.
Resumo:
Corona is an unavoidable phenomena in high voltage power transmission system, in spite of suitably designed insulator accessories and transmission line hardware. It is a proven fact that the continuous occurrence of corona can subject the polymeric insulator to a severe degradation. Further, moisture in the air has a positive influence on the corona activity. This paper presents the methodology to evaluate the corona performance of the silicone rubber housing material with simultaneous application of cold fog. Analysis conducted after corona treatment by the Fourier Transform Infrared Spectroscopy (FTIR) present an interesting results showing a higher hydroxylation of sample surface under the moisture application than in the normal condition for both AC and DC excitation. FTIR spectrum also indicates the presence of nitric acid on the treated surface with coldfog application. Results obtained from SEM analysis are also presented.