66 resultados para Sexualidade - Portugal - séc.20


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated thermal properties of bulk Si15Te85-xAgx (4 <= x <= 20) glasses in detail, through alternating differential scanning calorimetry experiments. The composition dependence of thermal parameters reveal the signatures of rigidity percolation and chemical threshold at compositions x = 12 and x = 19, respectively. The stability and glass forming ability of these glasses have also been determined using the data obtained from different thermodynamic quantities and it is found that the Si15Te85-xAgx glasses in the region 12 <= x <= 17 are more stable when compared to other glasses of the same series. Further, the blueshift observed in Raman spectroscopy investigations, in the composition range 12 <= x <= 13, support the occurrence of stiffness threshold in this composition range. All Si15Te85-xAgx (4 <= x <= 20) glasses are found to exhibit memory type switching (for sample thickness 0.25 mm) in the input current range 3-9 mA. The effect of rigidity percolation and chemical thresholds on switching voltages are observed at x = 12 and 19, respectively. (C) 2012 American Institute of Physics. [doi:10.1063/1.3682759]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hexagonal Dy(OH)(3) and cubic Dy2O3 nanorods were prepared by hydrothermal method. Dy(OH)(3) nanorods was directly obtained at 180 degrees C for 20 h after hydrothermal treatment whereas subsequently heat treatment at 750 degrees C for 2 h gives pure cubic Dy2O3. SEM micrographs reveal that needle shaped rods with different sizes were observed in both the phases. TEM results also confirm this. The TL response of hexagonal Dy(OH)(3) and cubic Dy2O3 nanorods have been analyzed for gamma-irradiation over a wide range of exposures (1-5 kGy). TL glow peak intensity increases with gamma dose in both the phases. The activation energy (E), order of kinetics (6), and frequency factor (s) for both the phases have been determined using Chen's peak shape method. The simple glow curve shape, structure and linear response to gamma-irradiation over a large span of exposures makes the cubic Dy2O3 as a useful dosimetric material to estimate high exposures of gamma-rays. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mesoporous MnO2 samples with average pore-size in the range of 2-20 nm are synthesized in sonochemical method from KMnO4 by using a tri-block copolymer, namely, poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (P123) as a soft template as well as a reducing agent. The MnO2 samples are found to be poorly crystalline. On increasing the amplitude of sonication, a change in the morphology of MnO2 from nanoparticles to nanorods and also change in porosity are observed. A high BET surface area of 245 m(2) g(-1) is achieved for MnO2 sample. The MnO2 samples are subjected to electrochemical capacitance studies by cyclic voltammetry (CV) and galvanostatic charge-discharge cycling in 0.1 M aqueous Ca(NO3)(2) electrolyte. A maximum specific capacitance (SC) of 265 Fg(-1) is obtained for the MnO2 sample synthesized in sonochemical method using an amplitude of 30 mu m. The MnO2 samples also possess good electrochemical stability due to their favourable porous structure and high surface area. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temperature dependent X-ray powder diffraction and dielectric studies have been carried out on tetragonal compositions of (1-x) PbTiO 3(x) BiMeO 3; Me similar to Sc and Zn 1/2 Ti 1/2. The cubic and the tetragonal phases coexist over more than 100 degrees C for 0.70 PbTiO 30.3 Bi ( Zn 1/2 Ti 1/2) O 3 and 0.66 PbTiO 30.34 BiScO 3. The wide temperature range of phase coexistence is shown to be an intrinsic feature of the system, and is attributed to the increase in the degree of the covalent character of the ( Pb +Bi ) O bond with increasing concentration of Bi at the Pb -site. The d-values of the {111} planes of the coexisting phases are nearly identical, suggesting this plane to be the invariant plane for the martensitic type cubic-tetragonal transformation occurring in these systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cd-1 - xNixSiO3 (x = 1-7 mol%) nanophosphors have been prepared for the first time by the combustion method using oxylyldihydrizide as a fuel. Powder X-ray diffraction results confirm the formation of monoclinic phase. Scanning electron micrographs show that Ni2+ influences the porosity of samples. The optical energy gap is widened with increase of Ni2+ ion dopant. The electron paramagnetic resonance spectrum of Ni2+ ions in CdSiO3 exhibits a symmetric absorption at g = 2.343 and the site symmetry around Ni2+ ions is predominantly octahedral. The number of spins participating in resonance (N) and the paramagnetic susceptibility (chi) has been evaluated. The thermoluminescence intensity is found to increase up to similar to 20 min ultra-violet exposure and thereafter, decrease with further increase of ultra-violet dose. The kinetic parameters such as activation energy (E), frequency factor (s)and order of kinetics was estimated using glow peak shape method and the results are discussed. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the authors have investigated the likely future changes in the summer monsoon over the Western Ghats (WG) orographic region of India in response to global warming, using time-slice simulations of an ultra high-resolution global climate model and climate datasets of recent past. The model with approximately 20-km mesh horizontal resolution resolves orographic features on finer spatial scales leading to a quasi-realistic simulation of the spatial distribution of the present-day summer monsoon rainfall over India and trends in monsoon rainfall over the west coast of India. As a result, a higher degree of confidence appears to emerge in many aspects of the 20-km model simulation, and therefore, we can have better confidence in the validity of the model prediction of future changes in the climate over WG mountains. Our analysis suggests that the summer mean rainfall and the vertical velocities over the orographic regions of Western Ghats have significantly weakened during the recent past and the model simulates these features realistically in the present-day climate simulation. Under future climate scenario, by the end of the twenty-first century, the model projects reduced orographic precipitation over the narrow Western Ghats south of 16A degrees N that is found to be associated with drastic reduction in the southwesterly winds and moisture transport into the region, weakening of the summer mean meridional circulation and diminished vertical velocities. We show that this is due to larger upper tropospheric warming relative to the surface and lower levels, which decreases the lapse rate causing an increase in vertical moist static stability (which in turn inhibits vertical ascent) in response to global warming. Increased stability that weakens vertical velocities leads to reduction in large-scale precipitation which is found to be the major contributor to summer mean rainfall over WG orographic region. This is further corroborated by a significant decrease in the frequency of moderate-to-heavy rainfall days over WG which is a typical manifestation of the decrease in large-scale precipitation over this region. Thus, the drastic reduction of vertical ascent and weakening of circulation due to `upper tropospheric warming effect' predominates over the `moisture build-up effect' in reducing the rainfall over this narrow orographic region. This analysis illustrates that monsoon rainfall over mountainous regions is strongly controlled by processes and parameterized physics which need to be resolved with adequately high resolution for accurate assessment of local and regional-scale climate change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the temperature evolution of coherently excited acoustic and optical phonon dynamics in the superconducting iron pnictide single crystal Ca(Fe0.944Co0.056)(2)As-2 across the spin density wave transition at T-SDW similar to 85 K and the superconducting transition at T-SC similar to 20 K. The strain pulse propagation model applied to the generation of the acoustic phonons yields the temperature dependence of the optical constants, and longitudinal and transverse sound velocities in the temperature range from 3.1 K to 300 K. The frequency and dephasing times of the phonons show anomalous temperature dependence below T-SC indicating a coupling of these low-energy excitations with the Cooper-pair quasiparticles. A maximum in the amplitude of the acoustic modes at T similar to 170 is seen, attributed to spin fluctuations and strong spin-lattice coupling before T-SDW. Copyright (c) EPLA, 2012

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aluminum scandium binary alloys represent a promising precipitation-hardening alloy system. However, the hardness of the binary alloys decreases with the rapid coarsening of Al3Sc precipitate during high-temperature aging. In the current study, we report a new approach to compensate for the loss of mechanical properties by combining rapid solidification with very small ternary addition of transition metal Ni. This addition yields dispersion, and at a critical concentration improves the mechanical properties. We explore additions of a maximum of 0.06 at. pct of Nickel to a binary Al-0.14 at. pct Sc alloy, which yield nickel-rich dispersions. We report two kinds of biphasic dispersions containing AlNi2Sc/Al9Ni2 and alpha-Al/Al9Ni2 phase combinations. The maximum improvement in mechanical properties occurs with the addition of 0.045 at. pct Ni with a yield strength of 239 +/- A 7 MPa for an aging treatment at 583 K (310 A degrees C) for 15 hours. DOI: 10.1007/s11661-013-1624-z (C) The Minerals, Metals & Materials Society and ASM International 2013

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single-carrier frequency division multiple access (SC-FDMA) has become a popular alternative to orthogonal frequency division multiple access (OFDMA) in multiuser communication on the uplink. This is mainly due to the low peak-to-average power ratio (PAPR) of SC-FDMA compared to that of OFDMA. Long-term evolution (LTE) uses SC-FDMA on the uplink to exploit this PAPR advantage to reduce transmit power amplifier backoff in user terminals. In this paper, we show that SC-FDMA can be beneficially used for multiuser communication on the downlink as well. We present SC-FDMA transmit and receive signaling architectures for multiuser communication on the downlink. The benefits of using SC-FDMA on the downlink are that SC-FDMA can achieve i) significantly better bit error rate (BER) performance at the user terminal compared to OFDMA, and ii) improved PAPR compared to OFDMA which reduces base station (BS) power amplifier backoff (making BSs more green). SC-FDMA receiver needs to do joint equalization, which can be carried out using low complexity equalization techniques. For this, we present a local neighborhood search based equalization algorithm for SC-FDMA. This algorithm is very attractive both in complexity as well as performance. We present simulation results that establish the PAPR and BER performance advantage of SC-FDMA over OFDMA in multiuser SISO/MIMO downlink as well as in large-scale multiuser MISO downlink with tens to hundreds of antennas at the BS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dominant densification mechanisms for hot pressing of ZrB2-20 vol.% SiC composite at different hot-pressing temperatures and pressures was identified. The dominant densification mechanisms were found to change over a very short temperature range. For hot pressing at 1700 degrees C, the dominant densification mechanism was found to be mechanically driven particle fragmentation and rearrangement only, whereas at 1850 degrees C a plastic flow mechanism started to become dominant after initial particle fragmentation and rearrangement. At 2000 degrees C, the dominant mechanism changed from plastic flow to grain boundary diffusion. (c) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural, iono (IL) and thermoluminescence (TL) studies of Zn2SiO4:Sm3+ (1-5 mol%) nanophosphor bombarded with swift heavy ions in the fluence range 3.91 x 10(12)-21.48 x 10(12) cm(-2) have been carried out. The average crystallite sizes for pristine and ion irradiated for 3.91 x 10(12) ions cm(-2) and 21.48 x 10(12) ions cm(-2) were found to be 34, 26 and 20 nm. With increase of ion fluence, the intensity of XRD peaks decreases and FWHM increases. The peak broadening indicates the stress induced point/clusters defects produced due to heavy ion irradiation. IL studies were carried out for different Sm3+ concentrations in Zn2SiO4 by irradiating with ion fluence of 15.62 x 10(12) ions cm(-2). The characteristic emission peaks at similar to 562, 599, 646 and 701 nm were recorded by exciting Si7+ ions in the fluence range 3.91 x 10(12)-21.48 x 10(12) ions cm(-2). These peaks were attributed to (4)G(5/2)-> H-6(5/2) (562 nm), (4)G(5/2)-> H-6(7/2) (599 nm), (4)G(5/2)-> H-6(9/2) (646 nm), and (4)G(5/2)-> H-6(5/2) (701 nm) transitions of Sm3+. The highest emission was recorded at 3 mol% of Sm3+ doped Zn2SiO4. TL studies were carried out for 3 mol% Sm3+ concentration in the fluence range 3.91 x 10(12)-21.48 x 10(12) ions cm(-2). Two U glow peaks at 152 and 223 degrees C were recorded. The kinetic parameters (E, b, and s), were estimated using Chen's peak shape method. Simple glow curve structure (223 degrees C), highly resistive, increase in TL. intensity up to 19.53 x 10(12) ions cm(-2), simple trap distribution makes Zn2SiO4:Sm3+ (3 mol%) phosphor highly useful in radiation dosimetry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zinc substituted cobalt ferrite powders {Co(1-x)ZnxFe2O4} (0.0 <= x <= 0.5) were prepared by the solution combustion method. The structural, morphological, magnetic and electrical properties of as synthesized samples were studied. Powder X-ray diffraction patterns reveals single phase, cubic spinel structure with space group No. Fd (3) over barm (227). As zinc concentration increases, the lattice constant increases and the crystallite size decreases. The minimum crystallite size of similar to 12 nm was observed for x = 0.5 composition. The synthesized ferrite compounds show ferrimagnetic behavior, with coercivity value of 10779 Oe (Hard ferrite) at 20 K and 1298 Oe (soft ferrite) at room temperature (RT). The maximum saturation magnetization recorded for the Co0.5Zn0.5Fe2O4 composition was 99.78 emu g(-1) and 63.83 emu g(-1) at 20 K and RT respectively. The dielectric parameters such as dielectric constant, loss tangent and AC conductivity were determined as a function of frequency at RT. The magnetic and dielectric properties of the samples illustrates that the materials were quite useful for the fabrication of nanoelectronic devices. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various morphologies of Eu3+ activated gadolinium oxide have been prepared by hydrothermal method using hexadecylamine (HDA) as surfactant at different experimental conditions. The powder X-ray diffraction studies reveal as-formed product is hexagonal Gd(OH)(3):Eu3+ phase and subsequent heat treatment at 350 and 600 degrees C transforms to monoclinic GdOOH:Eu3+ and cubic Gd2O3:Eu3+ phases respectively. SEM pictures of without surfactant show irregular shaped rods along with flakes. However, in the presence of HDA surfactant, the particles are converted into rods of various sizes. The temperature dependent morphological evolution of Gd2O3:Eu3+ without and with HDA surfactant is studied. TEM micrographs of Gd(OH)(3):Eu3+ sample with HDA confirms smooth nanorods with various diameters in the range 20-100 nm. FTIR studies reveal that HDA surfactant plays an important role in conversion of cubic to hexagonal phases. Among these three phases, cubic phase Gd2O3:Eu3+ (lambda(ex) = 254 nm) show red emission at 612 nm corresponding to D-5(0)-> F-7(2) and is more efficient host than the monoclinic counterpart. The band gap for hexagonal Gd(OH)(3):Eu3+ is more when compared to monoclinic GdOOH:Eu3+ and cubic Gd2O3:Eu3+. (C) 2013 Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CaTiO3:Sm3+ (1-11 mol%) nanophosphors were successfully synthesized by a low temperature solution combustion method LCS]. The structural and morphological properties of the phosphors were studied by using Powder X-ray diffractometer (PXRD), Fourier transform infrared (FTIR), X-ray photo electron spectroscopy (XPS), scanning electron microscope (SEM) and transmission electron microscopy (TEM). TEM studies indicate that the size of the phosphor is similar to 20-35 nm. Photoluminescence (PL) properties of Sm3+ (1-11 mol%) doped CaTiO3 for NUV excitation (407 nm) was studied in order to investigate the possibility of its use in White light emitting diode (WLED) applications. The emission spectra consists of intra 4f transitions of Sm3+, such as (4)G(5/2) -> H-6(5/2) (561 nm), (4)G(5/2) -> H-6(7/2) (601-611 nm), (4)G(5/2) -> H-6(9/2) (648 nm) and (4)G(5/2) -> H-6(11/2) (703 nm) respectively. Further, the emission at 601-611 nm show strong orange-red emission and can be applied to the orange-red emission of phosphor for the application for near ultra violet (NUV) excitation. Thermoluminescence (TL) of the samples irradiated with gamma source in the dose range 100-500 Gy was recorded at a heating rate of 5 degrees C s(-1). Two well resolved glow peaks at 164 degrees C and 214 degrees C along with shouldered peak at 186 degrees C were recorded. TL intensity increases up to 300 Gy and thereafter, it decreases with further increase of dose. The kinetic parameters namely activation energy (E), frequency factor (s) and order of kinetics were estimated and results were discussed in detail. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel peptide containing a single disulfide bond, CIWPWC (Vi804), has been isolated and characterised from the venom of the marine cone snail, Conus virgo. A precursor polypeptide sequence derived from complementary DNA, corresponding to the M-superfamily conotoxins, has been identified. The identity of the synthetic and natural peptide sequence has been established. A detailed analysis of the conformation in solution is reported for Vi804 and a synthetic analogue, (CIWPWC)-W-D ((D)W3-Vi804), in order to establish the structure of the novel WPW motif, which occurs in the context of a 20-membered macrocyclic disulfide. Vi804 exists exclusively in the cis W3P4 conformer in water and methanol, whereas (D)W3-Vi804 occurs exclusively as the trans conformer. NMR spectra revealed a W3P4 typeVI turn in Vi804 and a typeII turn in the analogue peptide, (D)W3-Vi804. The extremely high-field chemical shifts of the proline ring protons, together with specific nuclear Overhauser effects, are used to establish a conformation in which the proline ring is sandwiched between the flanking Trp residues, which emphasises a stabilising role for the aromatic-proline interactions, mediated predominantly by dispersion forces.