272 resultados para Sequential indicator simulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present and compare the results obtained from semi-classical and quantum mechanical simulation for a Double Gate MOSFET structure to analyze the electrostatics and carrier dynamics of this device. The geometries like gate length, body, thickness of this device have been chosen according to the ITRS specification for the different technology nodes. We have shown the extent of deviation between the semi-classical and quantum mechanical results and hence the need of quantum simulations for the promising nanoscale devices in the future technology nodes predicted in ITRS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the problem of detecting statistically significant sequential patterns in multineuronal spike trains. These patterns are characterized by ordered sequences of spikes from different neurons with specific delays between spikes. We have previously proposed a data-mining scheme to efficiently discover such patterns, which occur often enough in the data. Here we propose a method to determine the statistical significance of such repeating patterns. The novelty of our approach is that we use a compound null hypothesis that not only includes models of independent neurons but also models where neurons have weak dependencies. The strength of interaction among the neurons is represented in terms of certain pair-wise conditional probabilities. We specify our null hypothesis by putting an upper bound on all such conditional probabilities. We construct a probabilistic model that captures the counting process and use this to derive a test of significance for rejecting such a compound null hypothesis. The structure of our null hypothesis also allows us to rank-order different significant patterns. We illustrate the effectiveness of our approach using spike trains generated with a simulator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the events near the fusion interfaces of dissimilar welds using a phase-field model developed for single-phase solidification of binary alloys. The parameters used here correspond to the dissimilar welding of a Ni/Cu couple. The events at the Ni and the Cu interface are very different, which illustrate the importance of the phase diagram through the slope of the liquidus curves. In the Ni side, where the liquidus temperature decreases with increasing alloying, solutal melting of the base metal takes place; the resolidification, with continuously increasing solid composition, is very sluggish until the interface encounters a homogeneous melt composition. The growth difficulty of the base metal increases with increasing initial melt composition, which is equivalent to a steeper slope of the liquidus curve. In the Cu side, the initial conditions result in a deeply undercooled melt and contributions from both constrained and unconstrained modes of growth are observed. The simulations bring out the possibility of nucleation of a concentrated solid phase from the melt, and a secondary melting of the substrate due to the associated recalescence event. The results for the Ni and Cu interfaces can be used to understand more complex dissimilar weld interfaces involving multiphase solidification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop several hardware and software simulation blocks for the TinyOS-2 (TOSSIM-T2) simulator. The choice of simulated hardware platform is the popular MICA2 mote. While the hardware simulation elements comprise of radio and external flash memory, the software blocks include an environment noise model, packet delivery model and an energy estimator block for the complete system. The hardware radio block uses the software environment noise model to sample the noise floor. The packet delivery model is built by establishing the SNR-PRR curve for the MICA2 system. The energy estimator block models energy consumption by Micro Controller Unit(MCU), Radio, LEDs, and external flash memory. Using the manufacturerpsilas data sheets we provide an estimate of the energy consumed by the hardware during transmission, reception and also track several of the MCUs states with the associated energy consumption. To study the effectiveness of this work, we take a case study of a paper presented in [1]. We obtain three sets of results for energy consumption through mathematical analysis, simulation using the blocks built into PowerTossim-T2 and finally laboratory measurements. Since there is a significant match between these result sets, we propose our blocks for T2 community to effectively test their application energy requirements and node life times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a scenario in which a wireless sensor network is formed by randomly deploying n sensors to measure some spatial function over a field, with the objective of computing a function of the measurements and communicating it to an operator station. We restrict ourselves to the class of type-threshold functions (as defined in the work of Giridhar and Kumar, 2005), of which max, min, and indicator functions are important examples: our discussions are couched in terms of the max function. We view the problem as one of message-passing distributed computation over a geometric random graph. The network is assumed to be synchronous, and the sensors synchronously measure values and then collaborate to compute and deliver the function computed with these values to the operator station. Computation algorithms differ in (1) the communication topology assumed and (2) the messages that the nodes need to exchange in order to carry out the computation. The focus of our paper is to establish (in probability) scaling laws for the time and energy complexity of the distributed function computation over random wireless networks, under the assumption of centralized contention-free scheduling of packet transmissions. First, without any constraint on the computation algorithm, we establish scaling laws for the computation time and energy expenditure for one-time maximum computation. We show that for an optimal algorithm, the computation time and energy expenditure scale, respectively, as Theta(radicn/log n) and Theta(n) asymptotically as the number of sensors n rarr infin. Second, we analyze the performance of three specific computation algorithms that may be used in specific practical situations, namely, the tree algorithm, multihop transmission, and the Ripple algorithm (a type of gossip algorithm), and obtain scaling laws for the computation time and energy expenditure as n rarr infin. In particular, we show that the computation time for these algorithms scales as Theta(radicn/lo- g n), Theta(n), and Theta(radicn log n), respectively, whereas the energy expended scales as , Theta(n), Theta(radicn/log n), and Theta(radicn log n), respectively. Finally, simulation results are provided to show that our analysis indeed captures the correct scaling. The simulations also yield estimates of the constant multipliers in the scaling laws. Our analyses throughout assume a centralized optimal scheduler, and hence, our results can be viewed as providing bounds for the performance with practical distributed schedulers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A better performing product code vector quantization (VQ) method is proposed for coding the line spectrum frequency (LSF) parameters; the method is referred to as sequential split vector quantization (SeSVQ). The split sub-vectors of the full LSF vector are quantized in sequence and thus uses conditional distribution derived from the previous quantized sub-vectors. Unlike the traditional split vector quantization (SVQ) method, SeSVQ exploits the inter sub-vector correlation and thus provides improved rate-distortion performance, but at the expense of higher memory. We investigate the quantization performance of SeSVQ over traditional SVQ and transform domain split VQ (TrSVQ) methods. Compared to SVQ, SeSVQ saves 1 bit and nearly 3 bits, for telephone-band and wide-band speech coding applications respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microwave sources used in present day applications are either multiplied source derived from basic quartz crystals, or frequency synthesizers. The frequency multiplication method increases FM noise power considerably, and has very low efficiency in addition to being very complex and expensive. The complexity and cost involved demands a simple, compact and tunable microwave source. A tunable dielectric resonator oscillator(DRO) is an ideal choice for such applications. In this paper, the simulation, design and realization of a tunable DRO with a center frequency of 6250 MHz is presented. Simulation has been carried out on HP-Ees of CAD software. Mechanical and electronic tuning features are provided. The DRO operates over a frequency range of 6235 MHz to 6375 MHz. The output power is +5.33 dBm at centre frequency. The performance of the DRO is as per design with respect to phase noise, harmonic levels and tunability. and hence, can conveniently be used for the intended applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Passive wavelength/time fiber-optic code division multiple access (WIT FO-CDMA) network is a viable option for highspeed access networks. Constructions of 2-D codes, suitable for incoherent WIT FO-CDMA, have been proposed to reduce the time spread of the 1-D sequences. The 2-D constructions can be broadly classified as 1) hybrid codes and 2) matrix codes. In our earlier work [141, we had proposed a new family of wavelength/time multiple-pulses-per-row (W/T MPR) matrix codes which have good cardinality, spectral efficiency and at the same time have the lowest off-peak autocorrelation and cross-correlation values equal to unity. In this paper we propose an architecture for a WIT MPR FO-CDAM network designed using the presently available devices and technology. A complete FO-CDMA network of ten users is simulated, for various number of simultaneous users and shown that 0 --> 1 errors can occur only when the number of interfering users is at least equal to the threshold value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article proposes a three-timescale simulation based algorithm for solution of infinite horizon Markov Decision Processes (MDPs). We assume a finite state space and discounted cost criterion and adopt the value iteration approach. An approximation of the Dynamic Programming operator T is applied to the value function iterates. This 'approximate' operator is implemented using three timescales, the slowest of which updates the value function iterates. On the middle timescale we perform a gradient search over the feasible action set of each state using Simultaneous Perturbation Stochastic Approximation (SPSA) gradient estimates, thus finding the minimizing action in T. On the fastest timescale, the 'critic' estimates, over which the gradient search is performed, are obtained. A sketch of convergence explaining the dynamics of the algorithm using associated ODEs is also presented. Numerical experiments on rate based flow control on a bottleneck node using a continuous-time queueing model are performed using the proposed algorithm. The results obtained are verified against classical value iteration where the feasible set is suitably discretized. Over such a discretized setting, a variant of the algorithm of [12] is compared and the proposed algorithm is found to converge faster.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed molecular simulations are carried out to investigate the effect of temperature on orientational order in cubane molecular crystal. We report a transition from an orientationally ordered to an orientationally disordered plastic crystalline phase in the temperature range 425-450 K. This is similar to the experimentally reported transition at 395 K. The nature of this transition is first order and is associated with a 4.8% increase in unit Cell volume that is comparable to the experimentally reported unit cell volume change of 5.4% (Phys. Rev. Lett. 1997, 78, 4938). An orientational order parameter, eta(T), has been defined in terms of average angle of libration of a molecular 3-fold axis and the orientational melting has been characterized by using eta(T). The orientational melting is associated with an anomaly in specific heat at constant pressure (C-p) and compressibility (kappa). The enthalpy of transition and entropy of transition associated with this orientational melting are 20.8 J mol(-1) and 0.046 J mol(-1) K-1, respectively. The structure of crystalline as well as plastic crystalline phases is characterized by using various radial distribution functions and orientational distribution functions. The coefficient of thermal expansion of the plastic crystalline phase is more than twice that of the crystalline phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Hybrid approach introduced by the authors for at-site modeling of annual and periodic streamflows in earlier works is extended to simulate multi-site multi-season streamflows. It bears significance in integrated river basin planning studies. This hybrid model involves: (i) partial pre-whitening of standardized multi-season streamflows at each site using a parsimonious linear periodic model; (ii) contemporaneous resampling of the resulting residuals with an appropriate block size, using moving block bootstrap (non-parametric, NP) technique; and (iii) post-blackening the bootstrapped innovation series at each site, by adding the corresponding parametric model component for the site, to obtain generated streamflows at each of the sites. It gains significantly by effectively utilizing the merits of both parametric and NP models. It is able to reproduce various statistics, including the dependence relationships at both spatial and temporal levels without using any normalizing transformations and/or adjustment procedures. The potential of the hybrid model in reproducing a wide variety of statistics including the run characteristics, is demonstrated through an application for multi-site streamflow generation in the Upper Cauvery river basin, Southern India. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A variety of N-alkyl-beta-aminodiselenides have been synthesized in high yield from sulfamidates under mild reaction conditions using potassium selenocyanate and benzyltriethylammonium tetrathiomolybdate ([BnNEt3](2)MoS4) in a sequential, one-pot, multistep reaction. The tolerance of multifarious protecting groups under the reaction conditions is discussed. The methodology was successfully extended to the synthesis of selenocystine,3,3'-dialkylselenocystine, and 3,3'-diphenylisoselenocystine and their direct incorporation into peptides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of power-law plasticity (yield strength and strain hardening exponent) on the plastic strain distribution underneath a Vickers indenter was systematically investigated by recourse to three-dimensional finite element analysis, motivated by the experimental macro-and micro-indentation on heat-treated Al-Zn-Mg alloy. For meaningful comparison between simulated and experimental results, the experimental heat treatment was carefully designed such that Al alloy achieve similar yield strength with different strain hardening exponent, and vice versa. On the other hand, full 3D simulation of Vickers indentation was conducted to capture subsurface strain distribution. Subtle differences and similarities were discussed based on the strain field shape, size and magnitude for the isolated effect of yield strength and strain hardening exponent.