401 resultados para Sequence dependent setups
Resumo:
Two algorithms that improve upon the sequent-peak procedure for reservoir capacity calculation are presented. The first incorporates storage-dependent losses (like evaporation losses) exactly as the standard linear programming formulation does. The second extends the first so as to enable designing with less than maximum reliability even when allowable shortfall in any failure year is also specified. Together, the algorithms provide a more accurate, flexible and yet fast method of calculating the storage capacity requirement in preliminary screening and optimization models.
Time dependent rotational flow of a viscous fluid over an infinite porous disk with a magnetic field
Resumo:
Both the semi-similar and self-similar flows due to a viscous fluid rotating with time dependent angular velocity over a porous disk of large radius at rest with or without a magnetic field are investigated. For the self-similar case the resulting equations for the suction and no mass transfer cases are solved numerically by quasilinearization method whereas for the semi-similar case and injection in the self-similar case an implicit finite difference method with Newton's linearization is employed. For rapid deceleration of fluid and for moderate suction in the case of self-similar flow there exists a layer of fluid, close to the disk surface where the sense of rotation is opposite to that of the fluid rotating far away. The velocity profiles in the absence of magnetic field are found to be oscillatory except for suction. For the accelerating freestream, (semi-similar flow) the effect of time is to reduce the amplitude of the oscillations of the velocity components. On the other hand the effect of time for the oscillating case is just the opposite.
Resumo:
Thermodynamic model first published in 1909, is being used extensively to understand the size-dependent melting of nanoparticles. Pawlow deduced an expression for the size-dependent melting temperature of small particles based on the thermodynamic model which was then modified and applied to different nanostructures such as nanowires, prism-shaped nanoparticles, etc. The model has also been modified to understand the melting of supported nanoparticles and superheating of embedded nanoparticles. In this article, we have reviewed the melting behaviour of nanostructures reported in the literature since 1909.
Resumo:
Using first-principles density-functional calculations, we determine and analyze the Born effective charges Z(*) that describe the coupling between electric field and atomic displacements for ferromagnetic double-perovskite compound, La2NiMnO6. We find that th Born effective charge matrix of Ni in La2NiMnO6, has an anomalously large antisymmetric component, whose magnitude reduces substantially upon change in the magnetic ordering between Ni and Mn, showing it to be a magnetism-dependent electrostructural coupling. We use a local picture of the electronic structure obtained with Wannier functions, along with its band-by-band decomposition to determine its electronic origin.
Resumo:
This splitting techniques for MARKOV chains developed by NUMMELIN (1978a) and ATHREYA and NEY (1978b) are used to derive an imbedded renewal process in WOLD's point process with MARKOV-correlated intervals. This leads to a simple proof of renewal theorems for such processes. In particular, a key renewal theorem is proved, from which analogues to both BLACKWELL's and BREIMAN's forms of the renewal theorem can be deduced.
Resumo:
In a multifaceted immunity to mycobacterial infection, induced expression of cyclooxygenase-2 (COX-2) by Mycobacterium bovis bacillus Calmette-Guerin (BCG) may act as an important influencing factor for the effective host immunity. We here demonstrate that M. bovis BCG-triggered TLR2-dependent signaling leads to COX-2 and PGE2 expression in vitro in macrophages and in vivo in mice. Further, the presence of PGE2 could be demonstrated in sera or cerebrospinal fluid of tuberculosis patients. The induced COX-2 expression in macrophages is dependent on NF-kappa B activation, which is mediated by inducible NO synthase (iNOS)/NO-dependent participation of the members of Notch1-PI-3K signaling cascades as well as iNOS-independent activation of ERK1/2 and p38 MAPKs. Inhibition of iNOS activity abrogated the M. bovis BCG ability to trigger the generation of Notch1 intracellular domain (NICD), a marker for Notch1 signaling activation, as well as activation of the PI-3K signaling cascade. On the contrary, treatment of macrophages with 3-morpholinosydnonimine, a NO donor, resulted in a rapid increase in generation of NICD, activation of PI-3K pathway, as well as the expression of COX-2. Stable expression of NICD in RAW 264.7 macrophages resulted in augmented expression of COX-2. Further, signaling perturbations suggested the involvement of the cross-talk of Notch1 with members with the PI-3K signaling cascade. These results implicate the dichotomous nature of TLR2 signaling during M. bovis BCG-triggered expression of COX-2. In this perspective, we propose the involvement of iNOS/NO as one of the obligatory, early, proximal signaling events during M. bovis BCG-induced COX-2 expression in macrophages.
Resumo:
Amino acid sequences are known to constantly mutate and diverge unless there is a limiting condition that makes such a change deleterious. However, closer examination of the sequence and structure reveals that a few large, cryptic repeats are nevertheless sequentially conserved. This leads to the question of why only certain repeats are conserved at the sequence level. It would be interesting to find out if these sequences maintain their conservation at the three-dimensional structure level. They can play an active role in protein and nucleotide stability, thus not only ensring proper functioning but also potentiating malfunction and disease. Therefore, insights into any aspect of the repeats - be it structure, function or evolution - would prove to be of some importance. This study aims to address the relationship between protein sequence and its three-dimensional structure, by examining if large cryptic sequence repeats have the same structure.
Resumo:
We demonstrate a chain length dependent crossover in the structural properties of linear hydrocarbon (n-alkane) chains using detailed atomistic simulations in explicit water. We identify a number of exotic structures of the polymer chain through energy minimization of representative snapshots collected from molecular dynamics trajectory. While the collapsed state is ring-like (circular) for small chains (CnH2n+2; n <= 20) and spherical for very long ones (n = 100), we find the emergence of ordered helical structures at intermediate lengths (n similar to 40). We find different types of disordered helices and toroid-like structures at n = 60. We also report a sharp transition in the stability of the collapsed state as a function of the chain length through relevant free energy calculations. While the collapsed state is only marginally metastable for C20H42, a clear bistable free energy surface emerges only when the chain is about 30 monomers long. For n = 30, the polymer exhibits an intermittent oscillation between the collapsed and the coil structures, characteristic of two stable states separated by a small barrier.
Resumo:
Bovine serum albumin conjugates of two trinucleotides, dpTpTpA and dTpTpAp, were prepared by linking the trinucleotides through their end phosphates by the ‘carbodiimide method’. Antibodies were raised in rabbits by injecting the trinucleotide-bovine serum albumin conjugates. Analysis by double diffusion in agar gel, quantitative precipitin reaction and its inhibition by haptens showed clearly the presence of antibodies specific to the whole trinucleotide molecule. The titre of antibodies obtained by the trinucleotide-rabbit serum albumin conjugates with their respective antisera was approximately the same, indicating that linking the trinucleotide through either 5′ or 3′ phosphate does not have an appreciable effect on the titre of antibodies. The results also demonstrate that the nucleotide(s) away from the carrier protein is more immunodominant than the one linked directly to the protein.
Resumo:
Following an invariant-imbedding approach, we obtain analytical expressions for the ensemble-averaged resistance (ρ) and its Sinai’s fluctuations for a one-dimensional disordered conductor in the presence of a finite electric field F. The mean resistance shows a crossover from the exponential to the power-law length dependence with increasing field strength in agreement with known numerical results. More importantly, unlike the zero-field case the resistance distribution saturates to a Poissonian-limiting form proportional to A‖F‖exp(-A‖F‖ρ) for large sample lengths, where A is constant.
Resumo:
A randomly interrupted strand model of a one-dimensional conductor is considered. An exact analytical expression is obtained for the temperature-dependent ac mobility for a finite segment drawn at random, taking into account the reflecting barriers at the two open ends. The real part of mobility shows a broad resonance as a function of both frequency and temperature, and vanishes quadratically in the dc limit. The frequency (temperature) maximum shifts to higher values for higher temperatures (frequencies).
Resumo:
4..T~iouridine, a thionucleoside present in the transfer RNA of the free living, nitrogen-fixing ?actenu~ Azotobacter »inelandii shows a culture condition dependent change. When thebacterium IS grown Intheabsen~e ofanyfixed nit~ogen thetRNA contains 4-thiouridine to theextent of 45% of the total sulphur Incorporated. This gets reduced to 5%when the bacterium is grown in the presen~e of.e~ces~ ofamm~nium salt.Instead, a new thionucleoside which appears to be a derivative of 4-thloundlne IS found In the tRNA to the extent of 28%of the total sulphur incorporated.
Resumo:
Abstract is not available.
Resumo:
Analytical models of IEEE 802.11-based WLANs are invariably based on approximations, such as the well-known mean-field approximations proposed by Bianchi for saturated nodes. In this paper, we provide a new approach for modeling the situation when the nodes are not saturated. We study a State Dependent Attempt Rate (SDAR) approximation to model M queues (one queue per node) served by the CSMA/CA protocol as standardized in the IEEE 802.11 DCF. The approximation is that, when n of the M queues are non-empty, the attempt probability of the n non-empty nodes is given by the long-term attempt probability of n saturated nodes as provided by Bianchi's model. This yields a coupled queue system. When packets arrive to the M queues according to independent Poisson processes, we provide an exact model for the coupled queue system with SDAR service. The main contribution of this paper is to provide an analysis of the coupled queue process by studying a lower dimensional process and by introducing a certain conditional independence approximation. We show that the numerical results obtained from our finite buffer analysis are in excellent agreement with the corresponding results obtained from ns-2 simulations. We replace the CSMA/CA protocol as implemented in the ns-2 simulator with the SDAR service model to show that the SDAR approximation provides an accurate model for the CSMA/CA protocol. We also report the simulation speed-ups thus obtained by our model-based simulation.
Resumo:
The conformation of the peptide Boc-L-Met-Aib-L-Phe-OMe has been studied in the solid state and solution by X-ray diffraction and 1H n.m.r., respectively. The peptide differs only in the N-terminal protecting group from the biologically active chemotactic peptide analog formyl-L-Met-Aib-L-Phe-OMe. The molecules adopt a type-II beta-turn in the solid state with Met and Aib as the corner residues (phi Met = -51.8 degrees, psi Met = 139.5 degrees, phi Aib = 58.1 degrees, psi Aib = 37.0 degrees). A single, weak 4----1 intramolecular hydrogen bond is observed between the Boc CO and Phe NH groups (N---O 3.25 A, N-H---O 128.4 degrees). 1H n.m.r. studies, using solvent and temperature dependencies of NH chemical shifts and paramagnetic radical induced line broadening of NH resonances, suggest that the Phe NH is solvent shielded in CDCl3 and (CD3)2SO. Nuclear Overhauser effects observed between Met C alpha H and Aib NH protons provide evidence of the occurrence of Met-Aib type-II beta-turns in these solvents.