164 resultados para Self-organized molecular films
Resumo:
Yttrium oxide (Y203) thin films have been deposited by radio frequency plasma assisted metal organic chemical vapor deposition (MOCVD) process using (2,2,6,6-tetramethy1-3,5-heptanedionate) yttrium (commonly known as Y(thd)3) precursor in a plasma of argon and oxygen gases at a substrate temperature of 350 C. The films have been deposited under influence of varying RF self-bias (-50 V to 175 V) on silicon, quartz, stainless steel and tantalum substrates. The deposited coatings are characterized by glancing angle X-ray diffraction (GIXRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), spectroscopic ellipsometry and scanning electron microscopy (SEM). GIXRD and FTIR results indicate deposition of Y2 03 (BCC structure) in all cases. However, XPS results indicate nonstoichiometric cubic phase deposition on the surface of deposited films. The degree of nonstoichiometry varies with bias during deposition. Ellipsometry results indicate that the refractive index for the deposited films is varying from 1.70 to 1.83 that is typical for Y203. All films are transparent in the investigated wavelength range 300-1200 nm. SEM results indicate that the microstructure of the films is changing with applied bias. Results indicate that it is possible to deposit single phase cubic Y203 thin films at low substrate temperature by RF plasma MOCVD process. RF self-bias that decides about the energy of impinging ions on the substrates plays an important role in controlling the texture of deposited Y203 films on the substrates. Results indicate that to control the structure of films and its texture, it is important to control the bias on the substrate during deposition. The films deposited at high bias level show degradation in the crystallinity and reduction of thickness. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
A paradigm shift from hard to flexible, organic-based optoelectronics requires fast and reversible mechanical response from actuating materials that are used for conversion of heat or light into mechanical motion. As the limits in the response times of polymer-based actuating materials are reached, which are inherent to the less-than-optimal coupling between the light/heat and mechanical energy in them, 1 a conceptually new approach to mechanical actuation is required to leapfrog the performance of organic actuators. Herein, we explore single crystals of 1,2,4,5-tetrabromobenzene (TBB) as actuating elements and establish relations between their kinematic profile and mechanical properties. Centimeter-size acicular crystals of TBB are the only naturally twinned crystals out of about a dozen known materials that exhibit the thermosalient effect-an extremely rare and visually impressive crystal locomotion. When taken over a phase transition, crystals of this material store mechanical strain and are rapidly self-actuated to sudden jumps to release the internal strain, leaping up to several centimeters. To establish the structural basis for this colossal crystal motility, we investigated the mechanical profile of the crystals from macroscale, in response to externally induced deformation under microscope, to nanoscale, by using nanoindentation. Kinematic analysis based on high-speed recordings of over 200 twinned TBB crystals exposed to directional or nondirectional heating unraveled that the crystal locomotion is a kinematically complex phenomenon that includes at least six kinematic effects. The nanoscale tests confirm the highly elastic nature, with an elastic deformation recovery (60%) that is far superior to those of molecular crystals reported earlier. This property appears to be critical for accumulation of stress required for crystal jumping. Twinned crystals of TBB exposed to moderate directional heating behave as all-organic analogue of a bimetallic `strip, where the lattice misfit between the two crystal components drives reveriible deformation of the crystal.
Resumo:
Recent years have seen a tremendous increase in the interest for constructing hollowed-out molecular frameworks, for their potential uses. Metal-ligand coordination-driven self-assembly has provided multitudes of opportunities in the formation of molecular architectures of desired shapes and sizes, with the help of the information already coded in the components. This article summarizes the recent developments in the construction of multicomponent molecular cages through this process, with a focus on the decreasing relevance of templates, and use of these systems in catalysis/host-guest chemistry.
Resumo:
We hereby report the development of non-polar epi-GaN films of usable quality, on an m-plane sapphire. Generally, it is difficult to obtain high-quality nonpolar material due to the planar anisotropic nature of the growth mode. However, we could achieve good quality epi-GaN films by involving controlled steps of nitridation. GaN epilayers were grown on m-plane (10-10) sapphire substrates using plasma assisted molecular beam epitaxy. The films grown on the nitridated surface resulted in a nonpolar (10-10) orientation while without nitridation caused a semipolar (11-22) orientation. Room temperature photoluminescence study showed that nonpolar GaN films have higher value of compressive strain as compared to semipolar GaN films, which was further confirmed by room temperature Raman spectroscopy. The room temperature UV photodetection of both films was investigated by measuring the I-V characteristics under UV light illumination. UV photodetectors fabricated on nonpolar GaN showed better characteristics, including higher external quantum efficiency, compared to photodetectors fabricated on semipolar GaN. X-ray rocking curves confirmed better crystallinity of semipolar as compared to nonpolar GaN which resulted in faster transit response of the device. (C) 2014 AIP Publishing LLC.
Resumo:
The performance of molecular materials in optoelectronic devices critically depends upon their electronic properties and solid-state structure. In this report, we have synthesized sulfur and selenium based (T4BT and T4BSe) donor-acceptor-donor (D-A-D) organic derivatives in order to understand the structure-property correlation in organic semiconductors by selectively tuning the chalcogen atom. The photophysical properties exhibit a significant alteration upon varying a single atom in the molecular structure. A joint theoretical and experimental investigation suggests that replacing sulfur with selenium significantly reduces the band gap and molar absorption coefficient because of lower electronegativity and ionization potential of selenium. Single-crystal X-ray diffraction analysis showed differences in their solid-state packing and intermolecular interactions. Subsequently, difference in the solid-state packing results variation in self-assembly. Micorstructural changes within these materials are correlated to their electrical resistance variation, investigated by conducting probe atomic force microscopy (CP-AFM) measurements. These results provide useful guidelines to understand the fundamental properties of D-A-D materials prepared by atomistic modulation.
Resumo:
We found that Pd(II) ion (M) and the smallest 120 bidentate donor pyrimidine (L-a) self-assemble into a mononuclear M(L-a)(4) complex (1a) instead of the expected smallest M-12(L-a)(24) molecular ball (1), presumably due to the weak coordination nature of the pyrimidine. To construct such a pyrimidine bridged nanoball, we employed a new donor tris(4-(pyrimidin-5-yl)phenyl)amine (L); which upon selective complexation with Pd(II) ions resulted in the formation of a pregnant M24L24 molecular nanoball (2) consisting of a pyrimidine-bridged Pd-12 baby-ball supported by a Pd-12 larger mother-ball. The formation of the baby-ball was not successful without the support of the mother-ball. Thus, we created an example of a self-assembly where the inner baby-ball resembling to the predicted M-12(L-a)(24) ball (1) was incarcerated by the giant outer mother-ball by means of geometrical constraints. Facile conversion of the pregnant ball 2 to a smaller M-12(L-b)(24) ball 3 with dipyridyl donor was achieved in a single step.
Resumo:
Polyelectrolyte multilayer (PEM) thin film composed of weak polyelectrolytes was designed by layer-by-layer (LbL) assembly of poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) for multi-drug delivery applications. Environmental stimuli such as pH and ionic strength showed significant influence in changing the film morphology from pore-free smooth structure to porous structure and favored triggered release of loaded molecules. The film was successfully loaded with bovine serum albumin (BSA) and ciprofloxacin hydrochloride (CH) by modulating the porous polymeric network of the film. Release studies showed that the amount of release could be easily controlled by changing the environmental conditions such as pH and ionic strength. Sustained release of loaded molecules was observed up to 8 h. The fabricated films were found to be biocompatible with epithelial cells during in-vitro cell culture studies. PEM film reported here not only has the potential to be used as self-responding thin film platform for transdermal drug delivery, but also has the potential for further development in antimicrobial or anti-inflammatory coatings on implants and drug-releasing coatings for stents. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
A water soluble `molecular dice' was synthesised via coordination driven self-assembly of a Pd(II) ion with a flexible cationic tritopic donor and was fully characterised using NMR, ESI-MS and single crystal X-ray diffraction analysis. The donor-inherited redox active nature of the `molecular dice' was studied using cyclic voltammetry.
Resumo:
Four new hybrid (bolaphile/amphiphile) ion-pairs were synthesized. Electron microscopy indicated that each of these forms bilayer membranes upon dispersion in aqueous media. Membrane properties have also been examined by differential scanning calorimetry, microcalorimetry, temperature-dependent fluorescence anisotropy measurements, and UV-vis spectroscopy. The T-m values for the vesicular 1, 2, 3, 4, and 5 were 38, 12, 85, 31.3, and 41.6 degrees C, respectively. Interestingly the T-m values for 1 and 3 were found to depend on their concentration. The entrapment of small solute and the release capability have also been examined to demonstrate that these bilayers form enclosed vesicles. X-ray diffraction of the cast films has been performed to understand the nature and the thickness of these membrane organizations. The membrane widths ranged from 33 to 47 Angstrom. Finally, the above observations have been analyzed in light of the results obtained from molecular modeling studies. Thus we have demonstrated that membrane properties can be modulated by simple structural changes at the amphiphile level. It was shown that by judicious incorporation of central, isomeric, disubstituted aromatic units as structural anchors into different bolaphiles, one can modulate the properties of the resulting vesicles.
Resumo:
Highly luminescent CdSe/CdS core-shell nanocrystals have been assembled on indium tin oxide (ITO) coated glass substrates using a wet synthesis route. The physical properties of the quantum dots (QD) have been investigated using X-ray diffraction, transmission electron microscopy and optical absorption spectroscopy techniques. These quantum dots showed a strong enhancement in the near band edge absorption. The in situ luminescence behavior has been interpreted in the light of the quantum confinement effect and induced strain in the core-shell structure.
Resumo:
We formulate the thin-film hydrodynamics of a suspension of polar self-driven particles and show that it is prone to several instabilities through the interplay of activity, polarity, and the existence of a free surface. Our approach extends, to self-propelling systems, the work of Ben Amar and Cummings [Phys. Fluids 13 1160 (2001)] on thin-film nematics. Based on our estimates the instabilities should be seen in bacterial suspensions and the lamellipodium, and are potentially relevant to the morphology of biofilms. We suggest several experimental tests of our theory.
Resumo:
We present systematic investigations of buckling in Langmuir monolayers of polyvinyl acetate formed at the air-water interface. On compression the polymer monolayers are converted to a continuous membrane with a thickness of ~2–3 nm of well-defined periodicity, lambdab. Above a certain surface concentration the membrane undergoes a morphological transition buckling, leading to the formation of striped patterns. The periodicity seems to depend on molecular weight as per the predictions of the gravity-bending buckling formalism of Milner et al. for fluidlike films on water. However anomalously low values of bending rigidity and Young's modulus are obtained using this formalism. Hence we have considered an alternative model of buckling-based solidlike films on viscoelastic substrates. The values of bending rigidity and Young's modulus obtained by this method, although lower than expected, are closer to the bulk values. Remarkably, no buckling is found to occur above a certain molecular weight. We have tried to explain the observed molecular-weight dependence in terms of the variation in isothermal compressive modulus of the monolayers with surface concentration as well as provided possible explanations for the obtained low values of mechanical properties similar to that observed for ultrathin polymer films.
Resumo:
Graphene oxide (GO) is assembled on a gold substrate by a layer-by-layer technique using a self-assembled cystamine monolayer. The negatively charged GO platelets are attached to the positively charged cystamine monolayer through electrostatic interactions. Subsequently, it is shown that the GO can be reduced electrochemically using applied DC bias by scanning the potential from 0 to -1 V vs a saturated calomel electrode in an aqueous electrolyte. The GO and reduced graphene oxide (RGO) are characterized by Raman spectroscopy and atomic force microscopy (AFM). A clear shift of the G band from 1610 cm-1 of GO to 1585 cm-1 of RGO is observed. The electrochemical reduction is followed in situ by micro Raman spectroscopy by carrying out Raman spectroscopic studies during the application of DC bias. The GO and RGO films have been characterized by conductive AFM that shows an increase in the current flow by at least 3 orders of magnitude after reduction. The electrochemical method of reducing GO may open up another way of controlling the reduction of GO and the extent of reduction to obtain highly conducting graphene on electrode materials.
Resumo:
Molecular dynamics (MD) simulations are reported for an anchored bilayer formed by the intercalation of cetyl trimethyl ammonium (CTA) and CH3(CH2)15N+(CH3) ions in a layered solid, CdPS3. The intercalated CTA ions are organized with the cationic headgroups tethered to the inorganic sheet and the hydrocarbon tails arranged as bilayers. Simulations were performed at three temperatures, 65, 180, and 298 K, using an isothermal−isobaric ensemble that was subsequently switched once macroscopic parameters had converged to a canonical isothermal−isochoric ensemble. The simulations are able to reproduce the experimental features of this system, including the formation of the bilayer and layer-to-layer separation distance. An analysis of the conformation of the chains showed that at all three temperatures a fraction of the alkyl chains retained a planar all-trans conformation, and that gauche bonds occurred as part of a “kink” (gauche+−trans−gauche−) sequence and not as isolated gauche bonds. Trans−gauche isomerization rates for the alkyl chains in the anchored bilayer are slower than those in lipid bilayers at the same temperature and show a progressive increase as the torsion numbers approach the tail. A two-dimensional periodic Voronoi tessellation analysis was performed to obtain the single-molecular area of an alkyl chain in the bilayer. The single-molecular area relaxation times are an order of magnitude longer than the trans−gauche isomerization times. The results indicate that the trans−gauche isomerization is associated with the creation and annihilation of a kink defect sequence. The results of the present MD simulation explain the apparent conflicting estimates of the gauche disorder in this system as obtained from infrared and 13C nuclear magnetic resonance measurements.
Resumo:
The crystal structures of (1) L-arginine D-asparate, C6HIsN40~.C4H6NO4 [triclinic, P1, a=5.239(1), b=9.544(1), c=14.064(2)A, a=85"58(1), /3=88.73 (1), ~/=84.35 (1) °, Z=2] and (2) L-arginine D-glutamate trihydrate, C6H15N40~-.CsHsNO4.3H20 [monoclinic, P2~, a=9.968(2), b=4.652(1), c=19.930 (2) A, fl = 101.20 (1) °, Z = 2] have been determined using direct methods. They have been refined to R =0.042 and 0.048 for 2829 and 2035 unique reflections respectively [I>2cr(I)]. The conformations of the two arginine molecules in the aspartate complex are different from those observed so far in the crystal structures of arginine, its salts and complexes. In both complexes, the molecules are organized into double layers stacked along the longest axis. The core of each double layer consists of two parallel sheets made up of main-chain atoms, each involving both types of molecules. The hydrogen bonds within each sheet and those that interconnect the two sheets give rise to EL-, DD- and DE-type head-to-tail sequences. Adjacent double layers in (1) are held together by side-chain-side-chain interactions whereas those in (2) are interconnected through an extensive network of water molecules which interact with sidechain guanidyl and carboxylate groups. The aggregation pattern observed in the two LD complexes is fundamentally different from that found in the corresponding EL complexes.