81 resultados para Segmentation Strategy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, we have demonstrated that the protease domain of NS3 alone can bind specifically to hepatitis C virus (HCV) internal ribosome entry site (IRES) near the initiator AUG, dislodges human La protein and inhibits translation in favor of viral RNA replication. Here, by using a computational approach, the contact points of the protease on the HCV IRES were putatively mapped. A 30-mer NS3 peptide was designed from the predicted RNA-binding region that retained RNA-binding ability and also inhibited IRES-mediated translation. This peptide was truncated to 15 mer and this also demonstrated ability to inhibit HCV RNA-directed translation as well as replication. More importantly, its activity was tested in an in vivo mouse model by encapsulating the peptide in Sendai virus virosomes followed by intravenous delivery. The study demonstrates for the first time that the HCV NS3-IRES RNA interaction can be selectively inhibited using a small peptide and reports a strategy to deliver the peptide into the liver.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the synthesis of trigonal and tetragonal phase GeO2 films/microrods from a Ge wafer/powder by thermal oxidation. Both trigonal and tetragonal GeO2 exhibit excitation-dependent luminescence. Trigonal GeO2 exhibits strong green luminescence while tetragonal GeO2 exhibits strong blue luminescence when excited with ultra-violet light. Yellow-red luminescence is observed when both the phases are excited with green light. The emission wavelength varies almost linearly with the excitation wavelength both for trigonal and tetragonal GeO2. The variation is significant in the case of tetragonal GeO2, indicating a potential wavelength converter material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Query focused summarization is the task of producing a compressed text of original set of documents based on a query. Documents can be viewed as graph with sentences as nodes and edges can be added based on sentence similarity. Graph based ranking algorithms which use 'Biased random surfer model' like topic-sensitive LexRank have been successfully applied to query focused summarization. In these algorithms, random walk will be biased towards the sentences which contain query relevant words. Specifically, it is assumed that random surfer knows the query relevance score of the sentence to where he jumps. However, neighbourhood information of the sentence to where he jumps is completely ignored. In this paper, we propose look-ahead version of topic-sensitive LexRank. We assume that random surfer not only knows the query relevance of the sentence to where he jumps but he can also look N-step ahead from that sentence to find query relevance scores of future set of sentences. Using this look ahead information, we figure out the sentences which are indirectly related to the query by looking at number of hops to reach a sentence which has query relevant words. Then we make the random walk biased towards even to the indirect query relevant sentences along with the sentences which have query relevant words. Experimental results show 20.2% increase in ROUGE-2 score compared to topic-sensitive LexRank on DUC 2007 data set. Further, our system outperforms best systems in DUC 2006 and results are comparable to state of the art systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses an approach for river mapping and flood evaluation based on multi-temporal time-series analysis of satellite images utilizing pixel spectral information for image clustering and region based segmentation for extracting water covered regions. MODIS satellite images are analyzed at two stages: before flood and during flood. Multi-temporal MODIS images are processed in two steps. In the first step, clustering algorithms such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are used to distinguish the water regions from the non-water based on spectral information. These algorithms are chosen since they are quite efficient in solving multi-modal optimization problems. These classified images are then segmented using spatial features of the water region to extract the river. From the results obtained, we evaluate the performance of the methods and conclude that incorporating region based image segmentation along with clustering algorithms provides accurate and reliable approach for the extraction of water covered region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inverse problem in photoacoustic tomography (PAT) seeks to obtain the absorbed energy map from the boundary pressure measurements for which computationally intensive iterative algorithms exist. The computational challenge is heightened when the reconstruction is done using boundary data split into its frequency spectrum to improve source localization and conditioning of the inverse problem. The key idea of this work is to modify the update equation wherein the Jacobian and the perturbation in data are summed over all wave numbers, k, and inverted only once to recover the absorbed energy map. This leads to a considerable reduction in the overall computation time. The results obtained using simulated data, demonstrates the efficiency of the proposed scheme without compromising the accuracy of reconstruction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a finite element-based strategy for exterior acoustical problems based on an assumed pressure form that favours outgoing waves. The resulting governing equation, weak formulation, and finite element formulation are developed both for coupled and uncoupled problems. The developed elements are very similar to conventional elements in that they are based on the standard Galerkin variational formulation and use standard Lagrange interpolation functions and standard Gaussian quadrature. In addition and in contrast to wave envelope formulations and their extensions, the developed elements can be used in the immediate vicinity of the radiator/scatterer. The method is similar to the perfectly matched layer (PML) method in the sense that each layer of elements added around the radiator absorbs acoustical waves so that no boundary condition needs to be applied at the outermost boundary where the domain is truncated. By comparing against strategies such as the PML and wave-envelope methods, we show that the relative accuracy, both in the near and far-field results, is considerably higher.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Medical image segmentation finds application in computer-aided diagnosis, computer-guided surgery, measuring tissue volumes, locating tumors, and pathologies. One approach to segmentation is to use active contours or snakes. Active contours start from an initialization (often manually specified) and are guided by image-dependent forces to the object boundary. Snakes may also be guided by gradient vector fields associated with an image. The first main result in this direction is that of Xu and Prince, who proposed the notion of gradient vector flow (GVF), which is computed iteratively. We propose a new formalism to compute the vector flow based on the notion of bilateral filtering of the gradient field associated with the edge map - we refer to it as the bilateral vector flow (BVF). The range kernel definition that we employ is different from the one employed in the standard Gaussian bilateral filter. The advantage of the BVF formalism is that smooth gradient vector flow fields with enhanced edge information can be computed noniteratively. The quality of image segmentation turned out to be on par with that obtained using the GVF and in some cases better than the GVF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scenic word images undergo degradations due to motion blur, uneven illumination, shadows and defocussing, which lead to difficulty in segmentation. As a result, the recognition results reported on the scenic word image datasets of ICDAR have been low. We introduce a novel technique, where we choose the middle row of the image as a sub-image and segment it first. Then, the labels from this segmented sub-image are used to propagate labels to other pixels in the image. This approach, which is unique and distinct from the existing methods, results in improved segmentation. Bayesian classification and Max-flow methods have been independently used for label propagation. This midline based approach limits the impact of degradations that happens to the image. The segmented text image is recognized using the trial version of Omnipage OCR. We have tested our method on ICDAR 2003 and ICDAR 2011 datasets. Our word recognition results of 64.5% and 71.6% are better than those of methods in the literature and also methods that competed in the Robust reading competition. Our method makes an implicit assumption that degradation is not present in the middle row.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a segmentation algorithm to extract foreground object motion in a moving camera scenario without any preprocessing step such as tracking selected features, video alignment, or foreground segmentation. By viewing it as a curve fitting problem on advected particle trajectories, we use RANSAC to find the polynomial that best fits the camera motion and identify all trajectories that correspond to the camera motion. The remaining trajectories are those due to the foreground motion. By using the superposition principle, we subtract the motion due to camera from foreground trajectories and obtain the true object-induced trajectories. We show that our method performs on par with state-of-the-art technique, with an execution time speed-up of 10x-40x. We compare the results on real-world datasets such as UCF-ARG, UCF Sports and Liris-HARL. We further show that it can be used toper-form video alignment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flood is one of the detrimental hydro-meteorological threats to mankind. This compels very efficient flood assessment models. In this paper, we propose remote sensing based flood assessment using Synthetic Aperture Radar (SAR) image because of its imperviousness to unfavourable weather conditions. However, they suffer from the speckle noise. Hence, the processing of SAR image is applied in two stages: speckle removal filters and image segmentation methods for flood mapping. The speckle noise has been reduced with the help of Lee, Frost and Gamma MAP filters. A performance comparison of these speckle removal filters is presented. From the results obtained, we deduce that the Gamma MAP is reliable. The selected Gamma MAP filtered image is segmented using Gray Level Co-occurrence Matrix (GLCM) and Mean Shift Segmentation (MSS). The GLCM is a texture analysis method that separates the image pixels into water and non-water groups based on their spectral feature whereas MSS is a gradient ascent method, here segmentation is carried out using spectral and spatial information. As test case, Kosi river flood is considered in our study. From the segmentation result of both these methods are comprehensively analysed and concluded that the MSS is efficient for flood mapping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Latent variable methods, such as PLCA (Probabilistic Latent Component Analysis) have been successfully used for analysis of non-negative signal representations. In this paper, we formulate PLCS (Probabilistic Latent Component Segmentation), which models each time frame of a spectrogram as a spectral distribution. Given the signal spectrogram, the segmentation boundaries are estimated using a maximum-likelihood approach. For an efficient solution, the algorithm imposes a hard constraint that each segment is modelled by a single latent component. The hard constraint facilitates the solution of ML boundary estimation using dynamic programming. The PLCS framework does not impose a parametric assumption unlike earlier ML segmentation techniques. PLCS can be naturally extended to model coarticulation between successive phones. Experiments on the TIMIT corpus show that the proposed technique is promising compared to most state of the art speech segmentation algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Backgrond: Muscular dystrophies consist of a number of juvenile and adult forms of complex disorders which generally cause weakness or efficiency defects affecting skeletal muscles or, in some kinds, other types of tissues in all parts of the body are vastly affected. In previous studies, it was observed that along with muscular dystrophy, immune inflammation was caused by inflammatory cells invasion - like T lymphocyte markers (CD8+/CD4+). Inflammatory processes play a major part in muscular fibrosis in muscular dystrophy patients. Additionally, a significant decrease in amounts of two myogenic recovery factors (myogenic differentation 1 MyoD] and myogenin) in animal models was observed. The drug glatiramer acetate causes anti-inflammatory cytokines to increase and T helper (Th) cells to induce, in an as yet unknown mechanism. MyoD recovery activity in muscular cells justifies using it alongside this drug. Methods: In this study, a nanolipodendrosome carrier as a drug delivery system was designed. The purpose of the system was to maximize the delivery and efficiency of the two drug factors, MyoD and myogenin, and introduce them as novel therapeutic agents in muscular dystrophy phenotypic mice. The generation of new muscular cells was analyzed in SW1 mice. Then, immune system changes and probable side effects after injecting the nanodrug formulations were investigated. Results: The loaded lipodendrimer nanocarrier with the candidate drug, in comparison with the nandrolone control drug, caused a significant increase in muscular mass, a reduction in CD4+/CD8+ inflammation markers, and no significant toxicity was observed. The results support the hypothesis that the nanolipodendrimer containing the two candidate drugs will probably be an efficient means to ameliorate muscular degeneration, and warrants further investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem addressed in this paper is concerned with an important issue faced by any green aware global company to keep its emissions within a prescribed cap. The specific problem is to allocate carbon reductions to its different divisions and supply chain partners in achieving a required target of reductions in its carbon reduction program. The problem becomes a challenging one since the divisions and supply chain partners, being autonomous, may exhibit strategic behavior. We use a standard mechanism design approach to solve this problem. While designing a mechanism for the emission reduction allocation problem, the key properties that need to be satisfied are dominant strategy incentive compatibility (DSIC) (also called strategy-proofness), strict budget balance (SBB), and allocative efficiency (AE). Mechanism design theory has shown that it is not possible to achieve the above three properties simultaneously. In the literature, a mechanism that satisfies DSIC and AE has recently been proposed in this context, keeping the budget imbalance minimal. Motivated by the observation that SBB is an important requirement, in this paper, we propose a mechanism that satisfies DSIC and SBB with slight compromise in allocative efficiency. Our experimentation with a stylized case study shows that the proposed mechanism performs satisfactorily and provides an attractive alternative mechanism for carbon footprint reduction by global companies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate and timely prediction of weather phenomena, such as hurricanes and flash floods, require high-fidelity compute intensive simulations of multiple finer regions of interest within a coarse simulation domain. Current weather applications execute these nested simulations sequentially using all the available processors, which is sub-optimal due to their sub-linear scalability. In this work, we present a strategy for parallel execution of multiple nested domain simulations based on partitioning the 2-D processor grid into disjoint rectangular regions associated with each domain. We propose a novel combination of performance prediction, processor allocation methods and topology-aware mapping of the regions on torus interconnects. Experiments on IBM Blue Gene systems using WRF show that the proposed strategies result in performance improvement of up to 33% with topology-oblivious mapping and up to additional 7% with topology-aware mapping over the default sequential strategy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we report a breakthrough result on the difficult task of segmentation and recognition of coloured text from the word image dataset of ICDAR robust reading competition challenge 2: reading text in scene images. We split the word image into individual colour, gray and lightness planes and enhance the contrast of each of these planes independently by a power-law transform. The discrimination factor of each plane is computed as the maximum between-class variance used in Otsu thresholding. The plane that has maximum discrimination factor is selected for segmentation. The trial version of Omnipage OCR is then used on the binarized words for recognition. Our recognition results on ICDAR 2011 and ICDAR 2003 word datasets are compared with those reported in the literature. As baseline, the images binarized by simple global and local thresholding techniques were also recognized. The word recognition rate obtained by our non-linear enhancement and selection of plance method is 72.8% and 66.2% for ICDAR 2011 and 2003 word datasets, respectively. We have created ground-truth for each image at the pixel level to benchmark these datasets using a toolkit developed by us. The recognition rate of benchmarked images is 86.7% and 83.9% for ICDAR 2011 and 2003 datasets, respectively.