57 resultados para Secretory cavities
Resumo:
Water-dispersible, photocatalytic Fe3O4@TiO2 core shell magnetic nanoparticles have been prepared by anchoring cyclodextrin cavities to the TiO2 shell, and their ability to capture and photocatalytically destroy endocrine-disrupting chemicals, bisphenol A and dibutyl phthalate, present in water, has been demonstrated. The functionalized nanoparticles can be magnetically separated from the dispersion after photocatalysis and hence reused. Each component of the cyclodextrin-functionalized Fe3O4@TiO2 core shell nanoparticle has a crucial role in its functioning. The tethered cyclodextrins are responsible for the aqueous dispersibility of the nanoparticles and their hydrophobic cavities for the capture of the organic pollutants that may be present in water samples. The amorphous TiO2 shell is the photocatalyst for the degradation and mineralization of the organics, bisphenol A and dibutyl phthalate, under UV illumination, and the magnetism associated with the 9 nm crystalline Fe3O4 core allows for the magnetic separation from the dispersion once photocatalytic degradation is complete. An attractive feature of these ``capture and destroy'' nanomaterials is that they may be completely removed from the dispersion and reused with little or no loss of catalytic activity.
Resumo:
Resonance Raman spectroscopy is a powerful analytical tool for detecting and identifying analytes, but the associated strong fluorescence background severely limits the use of the technique. Here, we show that by attaching beta-cyclodextrin (beta-CD) cavities to reduced graphene-oxide (rGO) sheets we obtain a water dispersible material (beta-CD: rGO) that combines the hydrophobicity associated with rGO with that of the cyclodextrin cavities and provides a versatile platform for resonance Raman detection. Planar aromatic and dye molecules that adsorb on the rGO domains and nonplanar molecules included within the tethered beta-CD cavities have their fluorescence effectively quenched. We show that it is possible using the water dispersible beta-CD: rGO sheets to record the resonance Raman spectra of adsorbed and included organic chromophores directly in aqueous media without having to extract or deposit on a substrate. This is significant, as it allows us to identify and estimate organic analytes present in water by resonance Raman spectroscopy.
Resumo:
Thermo-mechanically processed Ti-6Al-4V alloy, with (0.1 wt.%) and without boron addition, has been subjected to tensile test under superplastic deformation conditions (Temperature, T = 850 degrees C and initial strain rate, (epsilon) over dot = 3 x 10(-4) s(-1)). The boron added alloy exhibited higher elongation (similar to 430%) in comparison to the base alloy without boron (similar to 365%). Superior ductility of the boron added alloy has been attributed to an enhanced alpha/beta interfacial boundary sliding. This was caused by riotous dynamic globularization leading to the abundant presence of equiaxed primary alpha grains with refined sizes and narrow distribution in the deforming microstructure. Cavities do occur around TiB particles during deformation; the cavities are, however, extremely localized and do not cause macroscopic cracking. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The malaria parasite experiences a significant amount of redox stress during its growth in human erythrocytes and heavily relies on secretory functions for pathogenesis. Most certainly, the parasite is equipped with machinery to tackle perturbations in the secretory pathway, like the unfolded protein response pathway in higher eukaryotes. Our bioinformatics analysis revealed the complete absence of genes involved in the canonical unfolded protein response pathway in Plasmodium falciparum. Accordingly, the parasite was unable to up-regulate endoplasmic reticulum (ER) chaperones or ER-associated degradation in response to DTT-mediated ER stress. Global profiling of gene expression upon DTT treatment revealed a network of AP2 transcription factors and their targets being activated. The overall outcome was up-regulation of genes involved in protein export and the sexual stage of the parasite life cycle culminating in gametocytogenesis. Our results suggest that the malaria parasite uses ER stress as a cue to switch to the transmissible sexual stages.
Resumo:
We propose an analytic perturbative scheme in the spirit of Lord Rayleigh's work for determining the eigenvalues of the Helmholtz equation in three dimensions inside an arbitrary boundary where the eigenfunction satisfies either the Dirichlet boundary condition or the Neumann boundary condition. Although numerous works are available in the literature for arbitrary boundaries in two dimensions, to the best of our knowledge the formulation in three dimensions is proposed for the first time. In this novel prescription, we have expanded the arbitrary boundary in terms of spherical harmonics about an equivalent sphere and obtained perturbative closed-form solutions at each order for the problem in terms of corrections to the equivalent spherical boundary for both the boundary conditions. This formulation is in parallel with the standard time-independent Rayleigh-Schrodinger perturbation theory. The efficacy of the method is tested by comparing the perturbative values against the numerically calculated eigenvalues for spheroidal, superegg and superquadric shaped boundaries. It is shown that this perturbation works quite well even for wide departure from spherical shape and for higher excited states too. We believe this formulation would find applications in the field of quantum dots and acoustical cavities.
Resumo:
Understanding the transients of buckling in drying colloidal suspensions is pivotal for producing new functional microstructures with tunable morphologies. Here, we report first observations and elucidate the buckling instability induced morphological transition (sphere to ring structure) in an acoustically levitated, heated nanosuspension droplet using dynamic energy balance. Droplet deformation featuring the formation of symmetric cavities is initiated by capillary pressure that is two to three orders of magnitude greater than the acoustic radiation pressure, thus indicating that the standing pressure field has no influence on the buckling front kinetics. With an increase in heat flux, the growth rate of surface cavities and their post-buckled volume increase while the buckling time period reduces, thereby altering the buckling pathway and resulting in distinct precipitate structures. However, irrespective of the heating rate, the volumetric droplet deformation exhibits a linear time dependence and the droplet vaporization is observed to deviate from the classical D-2-law.
Resumo:
The present paper analyzes the effects of plumes for heat transfer enhancement at solid-liquid interface taking both smooth and grooved surfaces. The experimental setup consists of a tank of dimensions 265 x 265 x 300 (height) containing water. The bottom surface was heated and free surface of the water was left open to the ambient. In the experiments, the bottom plate had either a smooth surface or a grooved surface. We used 90 V-grooved rough surfaces with two groove heights, 10mm and 3mm. The experiment was done with water layer depths of 90mm and 140mm, corresponding to values of aspect ratio(AR) equal to 2.9 and 1.8 respectively. Thymol blue, a pH sensitive dye, was used to visualize the flow near the heated plate. The measured heat transfer coefficients over the grooved surfaces were higher compared that over the smooth surface. The enhanced heat transport in the rough cavities cannot be ascribed to the increase in the contact area, rather it must be the local dynamics of the thermal boundary layer that changes the heat transport over the rough surface.
Resumo:
Protein lysine acetylation is known to regulate multiple aspects of bacterial metabolism. However, its presence in mycobacterial signal transduction and virulence-associated proteins has not been studied. In this study, analysis of mycobacterial proteins from different cellular fractions indicated dynamic and widespread occurrence of lysine acetylation. Mycobacterium tuberculosis proteins regulating diverse physiological processes were then selected and expressed in the surrogate host Mycobacterium smegmatis. The purified proteins were analyzed for the presence of lysine acetylation, leading to the identification of 24 acetylated proteins. In addition, novel lysine succinylation and propionylation events were found to co-occur with acetylation on several proteins. Protein-tyrosine phosphatase B (PtpB), a secretory phosphatase that regulates phosphorylation of host proteins and plays a critical role in Mycobacterium infection, is modified by acetylation and succinylation at Lys-224. This residue is situated in a lid region that covers the enzyme's active site. Consequently, acetylation and succinylation negatively regulate the activity of PtpB.
Resumo:
Human transthyretin (hTTR) is a multifunctional protein that is involved in several neurodegenerative diseases. Besides the transportation of thyroxin and vitamin A, it is also involved in the proteolysis of apolipoprotein A1 and A beta peptide. Extensive analyses of 32 high-resolution X-ray and neutron diffraction structures of hTTR followed by molecular-dynamics simulation studies using a set of 15 selected structures affirmed the presence of 44 conserved water molecules in its dimeric structure. They are found to play several important roles in the structure and function of the protein. Eight water molecules stabilize the dimeric structure through an extensive hydrogen-bonding network. The absence of some of these water molecules in highly acidic conditions (pH <= 4.0) severely affects the interfacial hydrogen-bond network, which may destabilize the native tetrameric structure, leading to its dissociation. Three pairs of conserved water molecules contribute to maintaining the geometry of the ligand-binding cavities. Some other water molecules control the orientation and dynamics of different structural elements of hTTR. This systematic study of the location, absence, networking and interactions of the conserved water molecules may shed some light on various structural and functional aspects of the protein. The present study may also provide some rational clues about the conserved water-mediated architecture and stability of hTTR.
Resumo:
The potential of textured hydrophobic surfaces to provide substantial drag reduction has been attributed to the presence of air bubbles trapped on the surface cavities. In this paper, we present results on water flow past a textured hydrophobic surface, while systematically varying the absolute pressure close to the surface. Trapped air bubbles on the surface are directly visualized, along with simultaneous pressure drop measurements across the surface in a microchannel configuration. We find that varying the absolute pressure within the channel greatly influences the trapped air bubble behavior, causing a consequent effect on the pressure drop (drag). When the absolute pressure within the channel is maintained below atmospheric pressure, we find that the air bubbles grow in size, merge and eventually detach from the surface. This growth and subsequent merging of the air bubbles leads to a substantial increase in the pressure drop. On the other hand, a pressure above the atmospheric pressure within the channel leads to gradual shrinkage and eventual disappearance of trapped air bubbles. We find that in this case, air bubbles do cause reduction in the pressure drop with the minimum pressure drop (or maximum drag reduction) occurring when the bubbles are flush with the surface. These results show that the trapped air bubble dynamics and the pressure drop across a textured hydrophobic microchannel are very significantly dependent on the absolute pressure within the channel. The results obtained hold important implications toward achieving sustained drag reduction in microfluidic applications.
Resumo:
We have investigated the multiferroic and glassy behaviour of metal-organic framework (MOF) material (CH3)(2)NH2Co(CHOO)(3). The compound has perovskite-like architecture in which the metal-formate forms a framework. The organic cation (CH3)(2)NH2+ occupies the cavities in the formate framework in the framework via N-H center dot center dot center dot O hydrogen bonds. At room temperature, the organic cation is disordered and occupies three crystallographically equivalent positions. Upon cooling, the organic cation is ordered which leads to a structural phase transition at 155 K. The structural phase transition is associated with a para-ferroelectric phase transition and is revealed by dielectric and pyroelectric measurements. Further, a PE hysteresis loop below 155 K confirms the ferroelectric behaviour of the material. Analysis of dielectric data reveal large frequency dispersion in the values of dielectric constant and tan delta which signifies the presence of glassy dielectric behaviour. The material displays a antiferromagnetic ordering below 15 K which is attributed to the super-exchange interaction between Co2+ ions mediated via formate linkers. Interestingly, another magnetic transition is also found around 11 K. The peak of the transition shifts to lower temperature with increasing frequency, suggesting glassy magnetism in the sample. (C) 2016 AIP Publishing LLC.
Resumo:
In this work, we have established the evaporation-liquid flow coupling mechanism by which sessile nanofluid droplets on a hydrophobic substrate evaporate and agglomerate to form unique morphological features under controlled external heating. It is well understood that evaporation coupled with internal liquid flow controls particle transport in a spatiotemporal sense. Flow characteristics inside the heated droplet are investigated and found to be driven by the buoyancy effects. Velocity magnitudes are observed to increase by an order at higher temperatures with similar looking flow profiles. The recirculating flow induced particle transport coupled with collision of particles and shear interaction between them leads to the formation of dome shaped viscoelastic shells of different dimensions depending on the surface temperature. These shells undergo sol-gel transition and subsequently undergo buckling instability leading to the formation of daughter cavities. With an increase in the surface temperature, droplets exhibit buckling from multiple sites over a larger sector in the top half of the droplet. Irrespective of the initial nanoparticle concentration and substrate temperature, growth of a daughter cavity (subsequent to buckling) inside the droplet is found to be controlled by the solvent evaporation rate from the droplet periphery and is shown to exhibit a universal trend.