204 resultados para Second-order nonlinearity
Resumo:
Existence of a periodic progressive wave solution to the nonlinear boundary value problem for Rayleigh surface waves of finite amplitude is demonstrated using an extension of the method of strained coordinates. The solution, obtained as a second-order perturbation of the linearized monochromatic Rayleigh wave solution, contains harmonics of all orders of the fundamental frequency. It is shown that the higher harmonic content of the wave increases with amplitude, but the slope of the waveform remains finite so long as the amplitude is less than a critical value.
Resumo:
Spin-state equilibria in the whole set of LCoO3 (where L stands for a rare-earth metal or Y) have been investigated with the use of 59Co NMR as a probe for the polycrystalline samples (except Ce) in the temperature interval 110-550 K and frequency range 3- 11.6 MHz. Besides confirming the coexistence of the high-spin—low-spin state in this temperature range, a quadrupolar interaction of ∼0.1 -0.5 MHz has been detected for the first time from 59Co NMR. The NMR line shape is found to depend strongly on the relative magnitude of the magnetic and quadrupolar interactions present. Analysis of the powder pattern reveals two basically different types of transferred hyperfine interaction between the lighter and heavier members of the rare-earth series. The first three members of the lighter rare-earth metals La, Pr (rhombohedral), and Nd (tetragonal), exhibit second-order quadrupolar interaction with a zero-asymmetry parameter at lower temperatures. Above a critical temperature TS (dependent on the size of the rare-earth ion), the quadrupolar interaction becomes temperature dependent and eventually gives rise to a first-order interaction thus indicating a possible second-order phase change. Sm and Eu (orthorhombic) exhibit also a second-order quadrupolar interaction with a nonzero asymmetry parameter ((η∼0.47)) at 300 K, while the orthorhombic second-half members (Dy,..., Lu and Y) exhibit first-order quadrupolar interaction at all temperatures. Normal paramagnetic behavior, i.e., a linear variation of Kiso with T-1, has been observed in the heavier rare-earth cobaltites (Er,..., Lu and Y), whereas an anomalous variation has been observed in (La,..., Nd)CoO3. Thus, Kiso increases with increasing temperature in PrCoO3 and NdCoO3. These observations corroborate the model of the spin-state equilibria in LCoO3 originally proposed by Raccah and Goodenough. A high-spin—low-spin ratio, r=1, can be stabilized in the perovskite structure by a cooperative displacement of the oxygen atoms from the high-spin towards the low-spin cation. Where this ordering into high- and low-spin sublattices occurs at r=1, one can anticipate equivalent displacement of all near-neighbor oxygen atoms towards a low-spin cobalt ion. Thus the heavier LCoO3 exhibits a small temperature-independent first-order quadrupolar interaction. Where r<1, the high- and low-spin states are disordered, giving rise to a temperature-dependent second-order quadrupolar interaction with an anomalous Kiso for the lighter LCoO3.
Resumo:
CIoH15NO282, Mr=245"0, orthorhombic, P21212 ~, a = 6.639 (2), b = 8.205 (2), c = 22.528(6)A, V= I227.2(6)A 3, z=4, Dm= 1.315, Dx= 1.326gem -3, MoKa, 2=0.7107A, 12= 3.63 cm -1, F(000) = 520, T= 293 K, R = 0.037 for 1115 significant reflections. The second-harmonicgeneration (SHG) efficiency of this compound is only 1/10th of the urea standard. The observed low second-order nonlinear response may be attributed to the unfavourable packing of the molecules in the crystal lattice.
Resumo:
The problem of identifying parameters of time invariant linear dynamical systems with fractional derivative damping models, based on a spatially incomplete set of measured frequency response functions and experimentally determined eigensolutions, is considered. Methods based on inverse sensitivity analysis of damped eigensolutions and frequency response functions are developed. It is shown that the eigensensitivity method requires the development of derivatives of solutions of an asymmetric generalized eigenvalue problem. Both the first and second order inverse sensitivity analyses are considered. The study demonstrates the successful performance of the identification algorithms developed based on synthetic data on one, two and a 33 degrees of freedom vibrating systems with fractional dampers. Limited studies have also been conducted by combining finite element modeling with experimental data on accelerances measured in laboratory conditions on a system consisting of two steel beams rigidly joined together by a rubber hose. The method based on sensitivity of frequency response functions is shown to be more efficient than the eigensensitivity based method in identifying system parameters, especially for large scale systems.
Resumo:
A technique for obtaining a uniformly valid solution to the problem of nonlinear propagation of surface acoustic waves excited by a monochromatic line source is presented. The method of solution is an extension of the method of strained coordinates wherein both the dependent and independent variables are expanded in perturbation series. A special transformation is proposed for the independent variables so as to make the expansions uniformly valid and also to satisfy all the boundary conditions. This perturbation procedure, carried out to the second order, yields a solution containing a second harmonic surface wave whose amplitude and phase exhibit an oscillatory variation along the direction of propagation. In addition, the solution also contains a second harmonic bulk wave of constant amplitude but varying phase propagating into the medium.
Resumo:
The crystal structure of TANDEM (des-N-tetramethyltriostin A), a synthetic analogue of the quinoxaline antibiotic triostin A, has been determined independently at -135 and 7 'C and refined to R values of 0.088 and 0.147, respectively. The molecule has approximate 2-fold symmetry, with the quinoxaline chromophores and the disulfide cross-bridge projecting from opposite sides of the peptide ring. The quinoxaline groups are nearly parallel to each other and separated by about 6.5 A. The peptide backbone resembles a distorted antiparallel 13 ribbon joined by intramolecular hydrogen bonds N-H(LVal)--O(L-Ala). At low temperatures, the TANDEM molecule is surrounded by a regular first- and second-order hydration sphere containing 14 independent water molecules. At room temperature, only the first-order hydration shell is maintained. Calculations of the interplanar separation of the quinoxaline groups as a function of their orientation with respect to the peptide ring support the viability of TANDEM to intercalate bifunctionally into DNA.
Resumo:
An oscillatory flow of a viscous incompressible fluid in an elastic tube of variable cross section has been investigated at low Reynolds number. The equations governing, the flow are derived under the assumption that the variation of the cross-section is slow in the axial direction for a tethered tube. The problem is then reduced to that of solving for the excess pressure from a second order ordinary differential equation with complex valued Bessel functions as the coefficients. This equation has been solved numerically for geometries of physiological interest and a comparison is made with some of the known theoretical and experimental results.
Resumo:
Optically clear glasses of various compositions in the system (100-x) TeO2-x(1.5K(2)O-Li2O-2.5Nb(2)O(5)) (2 <= x <= 12, in molar ratio) were prepared by the melt-quenching technique. The glassy nature of the as-quenched samples was established via differential scanning calorimetry (DSC). The amorphous and the crystalline nature of the as-quenched and heat-treated samples were confirmed by the X-ray powder diffraction and transmission electron microscopic (TEM) studies. Transparent glasses comprising potassium lithium niobate (K3Li2Nb5O15) microcrystallites on the surface and nanocrystallites within the glass were obtained by controlled heat-treatment of the as-quenched glasses just above the glass transition temperature (T-g). The optical transmission spectra of these glasses and glass-crystal composites of various compositions were recorded in the 200-2500 nm wavelength range. Various optical parameters such as optical band gap, Urbach energy, refractive index were determined. Second order optical non-linearity was established in the heat-treated samples by employing the Maker-Fringe method.
Resumo:
A numerical scheme is presented for accurate simulation of fluid flow using the lattice Boltzmann equation (LBE) on unstructured mesh. A finite volume approach is adopted to discretize the LBE on a cell-centered, arbitrary shaped, triangular tessellation. The formulation includes a formal, second order discretization using a Total Variation Diminishing (TVD) scheme for the terms representing advection of the distribution function in physical space, due to microscopic particle motion. The advantage of the LBE approach is exploited by implementing the scheme in a new computer code to run on a parallel computing system. Performance of the new formulation is systematically investigated by simulating four benchmark flows of increasing complexity, namely (1) flow in a plane channel, (2) unsteady Couette flow, (3) flow caused by a moving lid over a 2D square cavity and (4) flow over a circular cylinder. For each of these flows, the present scheme is validated with the results from Navier-Stokes computations as well as lattice Boltzmann simulations on regular mesh. It is shown that the scheme is robust and accurate for the different test problems studied.
Resumo:
The use of the photoacoustic effect in the investigation of first- and second-order phase transitions has been examined. Changes in the amplitude of the photoacoustic signal across the phase transition are compared with changes in thermal properties such as specific heat and thermal diffusivity. The systemsstudied include NaN02, TlN03, CsN03, NH4N03, BaTiO,, COO, Cu,HgI,, V02 andV305. The current photoacoustic studies are discussed in the light of the theoretical models available.
Resumo:
Sheep liver 5,10-methylenetetrahydrofolate reductase was subjected to specific chemical modification with phenylglyoxal, diethyl pyrocarbonate and N-bromosuccinimide. The second-order rate constants for inactivation were calculated to be 54 M-1 X min-1, 103 M-1 X min-1 and 154 M-1 X min-1 respectively. This inactivation could be prevented by incubation with substrates or products, suggesting that the residues modified, namely arginine, histidine and tryptophan, are essential for enzyme activity.
Resumo:
Existence of a periodic progressive wave solution to the nonlinear boundary value problem for Rayleigh surface waves of finite amplitude is demonstrated using an extension of the method of strained coordinates. The solution, obtained as a second-order perturbation of the linearized monochromatic Rayleigh wave solution, contains harmonics of all orders of the fundamental frequency. It is shown that the higher harmonic content of the wave increases with amplitude, but the slope of the waveform remains finite so long as the amplitude is less than a critical value.
Resumo:
One of the important developments in rotary wing aeroelasticity in the recent past has been the growing awareness and acceptance of the fact that the problem is inherently non-linear and that correct treatment of aeroelastic problems requires the development of a consistent mathematical model [l]. This has led to a number of studies devoted to the derivation of a consistent set of “second order” non-linear equations, for example, those of Hodges and Dowel1 [2], of Rosen and Friedmann [3], and of Kvaternik, White and Kaza [4], each of which differs from the others on the question of the inclusion of certain terms in the equations of motion. The final form of the equations depends first upon the ordering scheme used for characterizing the displacements and upon the consistency with which this is applied in omitting terms of lower order. The ideal way of achieving this would be to derive the equations of motion with all the terms first included regardless of their relative orders of magnitude and then to apply the ordering scheme.
Resumo:
Proton spin-lattice relaxation studies in sodium ammonium selenate dihydrate carried out in the temperature range 130 to 300 K at 10 MHz show a continuous change in T, at T, indicating a second order phase transition. This compound is a typical case of a highly hindered solid wherein the thermally activated reorientations of ammonium ions freeze well above 77 K, as seen by NMR.Untersuchimgen der Protonen-Spin-Gitter-Relaxation in Natriuni-Ammoniumselenat-Dihydrat bei 10 MHz im Temperaturbereich 130 bis 300 K zeigen eine kontinuierliche Andernng in TI bei T, und ergeben einen Phasenubergang zweiter Art. Diese Verbindung ist ein typischer Fall eines stark ,,behinderten" Festkarpers, in dein die thermisch aktivierten Reorientierungen der Ammoniumionen weit oberhalb 77 H einfrieren, wie die NMR-Ergebnisse zeigen.
Resumo:
Chemical modification of amino acid residues with phenylglyoxal, N-ethylmaleimide and diethyl pyrocarbonate indicated that at least one residue each of arginine, cysteine and histidine were essential for the activity of sheep liver serine hydroxymethyltransferase. The second-order rate constants for inactivation were calculated to be 0.016 mM-1 X min-1 for phenylglyoxal, 0.52 mM-1 X min-1 for N-ethylmaleimide and 0.06 mM-1 X min-1 for diethyl pyrocarbonate. Different rates of modification of these residues in the presence and in the absence of substrates and the cofactor pyridoxal 5'-phosphate as well as the spectra of the modified protein suggested that these residues might occur at the active site of the enzyme.