61 resultados para SUPERSYMMETRIC STANDARD MODEL


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider ZH and WH production at the Large Hadron Collider, where the Higgs decays to a b (b) over bar pair. We use jet substructure techniques to reconstruct the Higgs boson and construct angular observables involving leptonic decay products of the vector bosons. These efficiently discriminate between the tensor structure of the HVV vertex expected in the Standard Model and that arising from possible new physics, as quantified by higher dimensional operators. This can then be used to examine the CP nature of the Higgs as well as CP mixing effects in the HZZ and HWW vertices separately. (C) 2014 Elsevier B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider minimal models of gauge mediated supersymmetry breaking with an extra U(1) factor in addition to the Standard Model gauge group. A U(1) charged, Standard Model singlet is assumed to be present which allows for an additional NMSSM like coupling, lambda HuHdS. The U(1) is assumed to be flavour universal. Anomaly cancellation in the MSSM sector requires additional coloured degrees of freedom. The S field can get a large vacuum expectation value along with consistent electroweak symmetry breaking. It is shown that the lightest CP even Higgs boson can attain mass of the order of 125 GeV. (C) 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider the issue of the top quark Yukawa coupling measurement in a model-independent and general case with the inclusion of CP violation in the coupling. Arguably the best process to study this coupling is the associated production of the Higgs boson along with a t (t) over bar pair in a machine like the International Linear Collider (ILC). While detailed analyses of the sensitivity of the measurement-assuming a Standard Model (SM)-like coupling is available in the context of the ILC-conclude that the coupling could be pinned down to about a 10% level with modest luminosity, our investigations show that the scenario could be different in the case of a more general coupling. The modified Lorentz structure resulting in a changed functional dependence of the cross section on the coupling, along with the difference in the cross section itself leads to considerable deviation in the sensitivity. Our studies of the ILC with center-of-mass energies of 500 GeV, 800 GeV, and 1000 GeV show that moderate CP mixing in the Higgs sector could change the sensitivity to about 20%, while it could be worsened to 75% in cases which could accommodate more dramatic changes in the coupling. Detailed considerations of the decay distributions point to a need for a relook at the analysis strategy followed for the case of the SM, such as for a model-independent analysis of the top quark Yukawa coupling measurement. This study strongly suggests that a joint analysis of the CP properties and the Yukawa coupling measurement would be the way forward at the ILC and that caution must be exercised in the measurement of the Yukawa couplings and the conclusions drawn from it.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Since its induction, the selective-identity (sID) model for identity-based cryptosystems and its relationship with various other notions of security has been extensively studied. As a result, it is a general consensus that the sID model is much weaker than the full-identity (ID) model. In this paper, we study the sID model for the particular case of identity-based signatures (IBS). The main focus is on the problem of constructing an ID-secure IBS given an sID-secure IBS without using random oracles-the so-called standard model-and with reasonable security degradation. We accomplish this by devising a generic construction which uses as black-box: i) a chameleon hash function and ii) a weakly-secure public-key signature. We argue that the resulting IBS is ID-secure but with a tightness gap of O(q(s)), where q(s) is the upper bound on the number of signature queries that the adversary is allowed to make. To the best of our knowledge, this is the first attempt at such a generic construction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the most-studied signals for physics beyond the standard model in the production of gauge bosons in electron-positron collisions is due to the anomalous triple gauge boson couplings in the Z(gamma) final state. In this work, we study the implications of this at the ILC with polarized beams for signals that go beyond traditional anomalous triple neutral gauge boson couplings. Here we report a dimension-8 CP-conserving Z(gamma)Z vertex that has not found mention in the literature. We carry out a systematic study of the anomalous couplings in general terms and arrive at a classification. We then obtain linear-order distributions with and without CP violation. Furthermore, we place the study in the context of general BSM interactions represented by e(+)e(-)Z(gamma) contact interactions. We set up a correspondence between the triple gauge boson couplings and the four-point contact interactions. We also present sensitivities on these anomalous couplings, which will be achievable at the ILC with realistic polarization and luminosity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We update the constraints on two-Higgs-doublet models (2HDMs) focusing on the parameter space relevant to explain the present muon g - 2 anomaly, Delta alpha(mu), in four different types of models, type I, II, ``lepton specific'' (or X) and ``flipped'' (or Y). We show that the strong constraints provided by the electroweak precision data on the mass of the pseudoscalar Higgs, whose contribution may account for Delta alpha(mu), are evaded in regions where the charged scalar is degenerate with the heavy neutral one and the mixing angles alpha and beta satisfy the Standard Model limit beta - alpha approximate to pi/2. We combine theoretical constraints from vacuum stability and perturbativity with direct and indirect bounds arising from collider and B physics. Possible future constraints from the electron g - 2 are also considered. If the 126 GeV resonance discovered at the LHC is interpreted as the light CP-even Higgs boson of the 2HDM, we find that only models of type X can satisfy all the considered theoretical and experimental constraints.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We analyse the hVV (V = W, Z) vertex in a model independent way using Vh production. To that end, we consider possible corrections to the Standard Model Higgs Lagrangian, in the form of higher dimensional operators which parametrise the effects of new physics. In our analysis, we pay special attention to linear observables that can be used to probe CP violation in the same. By considering the associated production of a Higgs boson with a vector boson (W or Z), we use jet substructure methods to define angular observables which are sensitive to new physics effects, including an asymmetry which is linearly sensitive to the presence of CP odd effects. We demonstrate how to use these observables to place bounds on the presence of higher dimensional operators, and quantify these statements using a log likelihood analysis. Our approach allows one to probe separately the hZZ and hWW vertices, involving arbitrary combinations of BSM operators, at the Large Hadron Collider.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ATLAS and CMS collaborations at the LHC have performed analyses on the existing data sets, studying the case of one vector-like fermion or multiplet coupling to the standard model Yukawa sector. In the near future, with more data available, these experimental collaborations will start to investigate more realistic cases. The presence of more than one extra vector-like multiplet is indeed a common situation in many extensions of the standard model. The interplay of these vector-like multiplet between precision electroweak bounds, flavour and collider phenomenology is a important question in view of establishing bounds or for the discovery of physics beyond the standard model. In this work we study the phenomenological consequences of the presence of two vector-like multiplets. We analyse the constraints on such scenarios from tree-level data and oblique corrections for the case of mixing to each of the SM generations. In the present work, we limit to scenarios with two top-like partners and no mixing in the down-sector.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We explore beyond-standard-model (BSM) physics signatures in the l + jets channel of the t (t) over bar pair production process at the Tevatron and the LHC. We study the effects of BSM physics scenarios on the top-quark polarization and on the kinematics of the decay leptons. To this end, we construct asymmetries using the lepton energy and angular distributions. Further, we find their correlations with the top polarization, net charge asymmetry and top forward-backward asymmetry. We show that when used together, these observables can help discriminate effectively between SM and different BSM scenarios, which can lead to varying degrees of top polarization at the Tevatron as well as the LHC. We use two types of colored mediator models to demonstrate the effectiveness of proposed observables, an s-channel axigluon and a u-channel diquark.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose the generation of Standard Model fermion hierarchy by the extension of renormalizable SO(10) GUT with O(N (g) ) family gauge symmetry. In this scenario, Higgs representations of SO(10) also carry family indices and are called Yukawons. Vacuum expectation values of these Yukawon fields break GUT and family symmetry and generate MSSM Yukawa couplings dynamically. We have demonstrated this idea using Higgs irrep, ignoring the contribution of 1 2 0-plet which is, however, required for complete fitting of fermion mass-mixing data. The effective MSSM matter fermion couplings to the light Higgs pair are determined by the null eigenvectors of the MSSM-type Higgs doublet superfield mass matrix . A consistency condition on the doublet (1,2,+/- 1]) mass matrix ( 0) is required to keep one pair of Higgs doublets light in the effective MSSM. We show that the Yukawa structure generated by null eigenvectors of are of generic kind required by the MSSM. A hidden sector with a pair of (S (a b) ; I center dot (a b) ) fields breaks supersymmetry and facilitates 0. SUSY breaking is communicated via supergravity. In this scenario, matter fermion Yukawa couplings are reduced from 15 to just 3 parameters in MSGUT with three generations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study an s-channel resonance R as a viable candidate to fit the diboson excess reported by ATLAS. We compute the contribution of the similar to 2 TeV resonance R to semileptonic and leptonic final states at the 13 TeV LHC. To explain the absence of an excess in the semileptonic channel, we explore the possibility where the particle R decays to additional light scalars X, X or X, Y. A modified analysis strategy has been proposed to study the three-particle final state of the resonance decay and to identify decay channels of X. Associated production of R with gauge bosons has been studied in detail to identify the production mechanism of R. We construct comprehensive categories for vector and scalar beyond-standard-model particles which may play the role of particles R, X, Y and find alternate channels to fix the new couplings and search for these particles.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using the dimensional reduction regularization scheme, we show that radiative corrections to the anomaly of the axial current, which is coupled to the gauge field, are absent in a supersymmetric U(1) gauge model for both 't Hooft-Veltman and Bardeen prescriptions for γ5. We also discuss the results with reference to conventional dimensional regularization. This result has significant implications with respect to the renormalizability of supersymmetric models.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In a globally supersymmetric gauge theory with two distinct mass scales, the possible limitation on the gauge hierarchy due to the structure of the loop-corrected Higgs potential is shown to be absent. Also it has been demonstrated that the supersymmetry forces the large corrections to the two-point Greens functions of the light fields from the quadratic divergences and the logarithmic divergences with large coefficients to be zeroseparately. This would, therefore, allow a gauge hierarchy as large as desired.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we discuss SU(N) Chern-Simons theories at level k with both fermionic and bosonic vector matter. In particular we present an exact calculation of the free energy of the N = 2 supersymmetric model (with one chiral field) for all values of the `t Hooft coupling in the large N limit. This is done by using a generalization of the standard Hubbard-Stratanovich method because the SUSY model contains higher order polynomial interactions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have conceived a supersymmetric Type II seesaw model at TeV scale, which has some additional particles consisting of scalar and fermionic triplet Higgs states, whose masses are around a few hundred GeV. In this particular model, we have studied constraints on the masses of triplet states arising from the lepton flavor violating (LFV) processes, such as mu -> 3e and mu -> e gamma. We have analyzed the implications of these constraints on other observable quantities such as the muon anomalous magnetic moment and the decay patterns of scalar triplet Higgses. Scalar triplet Higgs states can decay into leptons and into supersymmetric fields. We have found that the constraints from LFV can affect these various decay modes.