98 resultados para SOLVOTHERMAL ROUTE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate an ultrafast method for the formation of, graphene supported Pt catalysts by the co-reduction of graphene oxide and Pt salt using ethylene glycol under microwave irradiation conditions. Detailed analysis of the mechanism of formation of the hybrids indicates a synergistic co-reduction mechanism whereby the presence of the Pt ions leads to a faster reduction of GO and the presence of the defect sites on the reduced GO serves as anchor points for the heterogeneous nucleation of Pt. The resulting hybrid consists of ultrafine nanoparticles of Pt uniformly distributed on the reduced GO susbtrate. We have shown that the hybrid exhibits good catalytic activity for methanol oxidation and hydrogen conversion reactions. The mechanism is general and applicable for the synthesis of other multifunctional hybrids based on graphene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline ZnO:Mn (0.1 mol%) phosphors have been successfully prepared by self propagating, gas producing solution combustion method. The powder X-ray diffraction of as-formed ZnO:Mn sample shows, hexagonal wurtzite phase with particle size of similar to 40 nm. For Mn doped ZnO, the lattice parameters and volume of unit cell (a=3.23065 angstrom, c=5.27563 angstrom and V=47.684 (angstrom)(3)) are found to be greater than that of undoped ZnO (a=3.19993 angstrom, c=5.22546 angstrom and V=46.336 (angstrom)(3)). The SEM micrographs reveal that besides the spherical crystals, the powders also contained several voids and pores. The TEM photograph also shows the particles are approximately spherical in nature. The FTIR spectrum shows two peaks at similar to 3428 and 1598 cm(-1) which are attributed to O-H stretching and H-O-H bending vibration. The PL spectra of ZnO:Mn indicate a strong green emission peak at 526 nm and a weak red emission at 636 nm corresponding to T-4(1) -> (6)A(1) transition of Mn2+ ions. The EPR spectrum exhibits fine structure transition which will be split into six hyperfine components due to Mn-55 hyperfine coupling giving rise to all 30 allowed transitions. From EPR spectra the spin-Hamiltonian parameters have been evaluated and discussed. The magnitude of the hyperfine splitting (A) constant indicates that there exists a moderately covalent bonding between the Mn2+ ions and the surrounding ligands. The number of spins participating in resonance (N), its paramagnetic susceptibility (chi) have been evaluated. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, we demonstrated a very general route to monolithic macroporous materials prepared without the use of templates (Rajamathi et al. J. Mater. Chem. 2001, 11, 2489). The route involves finding a precursor containing two metals, A and B, whose oxides are largely immiscible. Firing of the precursor followed by suitable sintering results in a monolith from which one of the oxide phases can be chemically leached out to yield a macroporous mass of the other oxide phase. The metals A and B that we employed in the demonstration were Ni and Zn. From the NiO-ZnO monolith that was obtained by decomposing the precursor, ZnO could be leached out at high pH to yield macroporous NiO. In the present work, we show that combustion-chemical (also called self-propagating) decomposition of a mixture of Ni and Zn nitrates with urea as a fuel yields an intimate mixture of the oxides that can be sintered and leached with alkali to form a macroporous NiO monolith. The new process that we present here thereby avoids the need for a crystalline single-source precursor. A novel and unanticipated aspect of the present work is that the combination of high temperatures and rapid quenching associated with combustion synthesis results in an intimate mixture of wurtzite ZnO and the metastable rock-salt Ni1-xZnxO where x is about 0.3. Leaching this monolith with alkali gives a macroporous mass of rock-salt Ni1-xZnxO, which upon reduction in H-2/Ar forms macroporous Ni and ZnO. There are thus two stages in the process that lead to two modes of pore formation. The first is associated with leaching of ZnO by alkali. The second is associated with the reduction of porous Ni1-xZnxO to give porous Ni and ZnO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We review our recent contributions to the use of solvothermal methods for the preparation of different oxide and chalcogenide nanoparticles. We have prepared sub 10-nm,gamma-Fe2O3 ZnFe2O4, and CoFe2O4 particles by the decomposition of the corresponding cupferron complexes in the presence of n-octylamine or n-dodecylamine in solvothermal toluene. Similarly, dodecanethiol-capped chalcogenide nanoparticles of CdSe have been prepared by reacting cadmium stearates with H2Se under solvothermal conditions. The H2Se is generated in situ by the reduction of Se by tetralin. Using this latter technique, we have also been able to prepare PbSe and PbI2 in toluene under solvothermal conditions, albeit in bulk (rather than nanocrystalline) form. In the preparation of PbI2, HI is prepared by the in situ reduction of I-2 by tetralin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nickel substituted lithium-cobalt oxides, LiCo1-xNixO2 (0 < x < 0.4), have been synthesized in a very short time by a solution combustion method at 350 degreesC using diformyl hydrazine as a fuel. Pure phases with hexagonal lattice structure have been obtained. These compounds facilitate reversible insertion/extraction of Li+ ions with good discharge capacity between 3.0 and 4.4 V versus Li/Li+. Results of the studies by powder X-ray diffraction, scanning electron microscopy, cyclic voltammetry, galvanostatic charge-discharge cycling and ac impedance measurements are presented. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoparticle synthesis in a microemulsion route is typically controlled by changing the water to surfactant ratio, concentration of precursors, and/or concentration of micelles. The experiments carried out in this work with chloroauric acid and hydrazine hydrate as precursors in water/AOT-Brij30/isooctane microemulsions show that the reagent addition rate can also be used to tune the size of stable spherical gold nanoparticles to some extent. The particle size goes through a minimum with variation in feed addition rate. The increase in particle size with an increase in reaction temperature is in agreement with an earlier report. A population balance model is used to interpret the experimental findings. The reduced extent of nucleation at low feed addition rates and suppression of nucleation due to the finite rate of mixing at higher addition rates produce a minimum in particle size. The increase in particle size at higher reaction temperatures is explained through an increase in fusion efficiency of micelles which dissipates supersaturation; increase in solubility is shown to play an insignificant role. The moderate polydispersity of the synthesized particles is due to the continued nucleation and growth of particles. The polydispersity of micelle sizes by itself plays a minor role.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoparticles thin films have wide range of applications such as nanoelectronics, magnetic storage devices, SERS substrate fabrication, optical grating and antireflective coating. Present work describes a method to prepare large area nanoparticles thin film of the order of few square centimeters. Thin film deposition has been done successfully on a wide range of conducting as well as non conducting substrates such as carbon-coated copper grid, silicon, m-plane of alumina, glass and (100) plane of NaCl single crystal. SEM, TEM and AFM studies have been done for microstructural characterization of the thin films. A basic mechanism has been proposed towards the understanding of the deposition process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an approach directed toward a tashironin based complex natural product, efficacy of the singlet oxygen mediated [4+2]-cycloaddition to a tetracyclic cyclopentadiene has been evaluated to install the key cis-1,4-dihydroxy functionality. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A facile metal-free route of oxidative amination of benzoxazole by activation of C-H bonds with secondary or primary amines in the presence of catalytic iodine in aqueous tert-butyl hydroperoxide proceeds smoothly at ambient temperature under neat reaction condition to furnish the high yield of the aminated product. This user-friendly method to form C-N bonds produces tertiary butanol and water as the byproduct, which are environmentally benign. The application of the methodology is demonsrated by synthesizing therapeutically active benzoxazoles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular weight and polydispersity are two structural features of hyperbranched polymers that are difficult to control because of the statistical nature of the step-growth polycondensation of AB(2) type monomers; the statistical growth also causes the polydispersity index to increase with percent conversion (or molecular weight). We demonstrate that using controlled amounts of a specifically designed B(3) core, containing B-type functionality that are more reactive than those present in the AB(2) monomer, both the molecular weight and the polydispersity can be readily controlled; the PDI was shown to improve with increasing mole-fraction of the B(3) core while the polymer molecular weight showed an expected decrease. Incorporation of a ``clickable'' propargyl group in the B(3) core unit permitted the generation of a core-functionalizable hyperbranched polymer. Importantly, this clickable core, in combination with a recently developed AB(2) monomer, wherein the B-type groups are allyl ethers and A is an hydroxyl group, led to the generation of a hyperbranched polymer carrying orthogonally functionalizable core and peripheral groups, via a single-step melt polycondensation. Selective functionalization of the core and periphery using two different types of chromophores was achieved, and the occurrence of fluorescence resonance energy transfer (FRET) between the donor and acceptor chromophores was demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular weight and polydispersity are two structural features of hyperbranched polymers that are difficult to control because of the statistical nature of the step-growth polycondensation of AB(2) type monomers; the statistical growth also causes the polydispersity index to increase with percent conversion (or molecular weight). We demonstrate that using controlled amounts of a specifically designed B(3) core, containing B-type functionality that are more reactive than those present in the AB(2) monomer, both the molecular weight and the polydispersity can be readily controlled; the PDI was shown to improve with increasing mole-fraction of the B(3) core while the polymer molecular weight showed an expected decrease. Incorporation of a ``clickable'' propargyl group in the B(3) core unit permitted the generation of a core-functionalizable hyperbranched polymer. Importantly, this clickable core, in combination with a recently developed AB(2) monomer, wherein the B-type groups are allyl ethers and A is an hydroxyl group, led to the generation of a hyperbranched polymer carrying orthogonally functionalizable core and peripheral groups, via a single-step melt polycondensation. Selective functionalization of the core and periphery using two different types of chromophores was achieved, and the occurrence of fluorescence resonance energy transfer (FRET) between the donor and acceptor chromophores was demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have demonstrated the synthesis of light-sensitive polyelectrolyte capsules (PECs) by utilizing a novel polyol reduction method and investigated its applicability as photosensitive drug delivery vehicle. The nanostructured capsules were prepared via layer by layer (LbL) assembly of poly(allylamine hydrochloride) (PAN) and dextran sulfate (DS) on silica particles followed by in-situ synthesis of silver nanoparticles (NPs). Capsules without silver NPs were permeable to low molecular weight (A(w), 479 g/mol) rhodamine but impermeable to higher molecular weight fluorescence labeled dextran (FITC-dextran). However, capsules synthesized with silver NPs showed porous morphology and were permeable to higher molecular weight (M(w) 70 kDa) FITC-dextran also. These capsules were loaded with FITC-dextran using thermal encapsulation method by exploiting temperature induced shrinking of the capsules. During heat treatment the porous morphology of the capsules transformed into smooth pore free structure which prevents the movement of dextran into bulk during the loading process. When these loaded capsules are exposed to laser pulses, the capsule wall ruptured, resulting in the release of the loaded drug/dye. The rupture of the capsules was dependent on particle size, laser pulse energy and exposure time. The release was linear with time when pulse energy of 400 mu J was used and burst release was observed when pulse energy increased to 600 mu J.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Micrometre-scale polypyrrole (PPy) structures are synthesised for electrochemical supercapacitor applications by a facile electrochemical route. Globular polypyrrole microstructures of size < 5 μm are grown on stainless steel (SS-304) substrate by electro-polymerisation of pyrrole on oxygen microbubble templates electrochemically generated and stabilised in the presence of surfactant/supporting electrolyte/ dopant b-naphthalene sulfonic acid (b-NSA). Microstructures obtained with scan range of 0??1.6 V (against Ag/AgCl) are uniformly distributed over the surface with high coverage density of 5 x 105 to 8 x 10 cm-2. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy revealed that the formed microstructures are of Β-NSA doped PPy. Scanning electron microscopy showed the uniform spread and good coverage of microstructures over the substrate. Supercapacitor properties of PPy films are investigated by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge/discharge methods with 1.0 M KCl as electrolyte in a three-electrode electrochemical cell. Specific capacitance of 583 Fg-1 is obtained, which is greater than the values (350-400 Fg-1 highest) usually reported for this material. Electrochemical impedance spectroscopy proves the superc

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Micrometre-scale polypyrrole (PPy) structures are synthesised for electrochemical supercapacitor applications by a facile electrochemical route. Globular polypyrrole microstructures of size <5 mu m are grown on stainless steel (SS-304) substrate by electro-polymerisation of pyrrole on oxygen microbubble templates electrochemically generated and stabilised in the presence of surfactant/supporting electrolyte/dopant beta-naphthalene sulfonic acid (beta-NSA). Microstructures obtained with scan range of 0-1.6 V (against Ag/AgCl) are uniformly distributed over the surface with high coverage density of 5 x 10(5) to 8 x 10 cm(-2). Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy revealed that the formed microstructures are of beta-NSA doped PPy. Scanning electron microscopy showed the uniform spread and good coverage of microstructures over the substrate. Supercapacitor properties of PPy films are investigated by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge/discharge methods with 1.0 M KCl as electrolyte in a three-electrode electrochemical cell. Specific capacitance of 583 Fg(-1) is obtained, which is greater than the values (350-400 Fg(-1) highest) usually reported for this material. Electrochemical impedance spectroscopy proves the supercapacitance behaviour and explains the special inductive component of impedance observed in the high-frequency regime because of the globular structures of PPy deposited